329 research outputs found

    Liquid 4He near the superfluid transition in the presence of a heat current and gravity

    Full text link
    The effects of a heat current and gravity in liquid 4He near the superfluid transition are investigated for temperatures above and below T_lambda. We present a renormalization-group calculation based on model F for the Green's function in a self-consistent approximation which in quantum many-particle theory is known as the Hartree approximation. The approach can handle a zero average order parameter above and below T_lambda and includes effects of vortices. We calculate the thermal conductivity and the specific heat for all temperatures T and heat currents Q in the critical regime. Furthermore, we calculate the temperature profile. Below T_lambda we find a second correlation length which describes the dephasing of the order parameter field due to vortices. We find dissipation and mutual friction of the superfluid-normal fluid counterflow and calculate the Gorter-Mellink coefficient A. We compare our theoretical results with recent experiments.Comment: 26 pages, 9 figure

    Thermodynamics of Crossover from Weak- to Strong-Coupling Superconductivity

    Full text link
    In this paper we study an evolution of low-temperature thermodynamical quantities for an electron gas with a δ \delta -function attraction as the system crosses over from weak-coupling (BCS-type) to strong-coupling (Bose-type) superconductivity in three and two dimensions.Comment: Replaced with journal version. Insignificant presentation changes. Links to related papers are also available at the author home page http://www.teorfys.uu.se/PEOPLE/egor

    Surprising flowering response to photoperiod: Preliminary characterization of West and Central African pearl millet germplasm

    Get PDF
    Pearl millet (Pennisetum glaucum) is considered to be a short-day species that flowers, or flowers earlier, when day lengths are short. A few studies with two to six planting dates and few selected entries have been conducted in USA (Burton 1965), Senegal (Ramond 1968), and India (Patil et al. 1978, Das 1991). However, there is no known research on the flowering response of pearl millet to photoperiod changes over the entire year. Likewise, knowledge about the photoperiod-sensitivity in West and Central African pearl millets is insufficient

    Improved methodologies for breeding striga-resistant sorghums

    Get PDF
    Parasitic flowering weeds of the genus Striga (Scrophulariaceae) cause substantial losses in sorghum [Sorghum bicolor (L.) Moench] production in sub-Saharan Africa. Striga-resistant sorghum cultivars could be a major component of integrated striga management, if resistance was available in adapted, productive germplasm. In this paper we review methodologies for breeding striga-resistant sorghums. The agar-gel assay is an excellent tool to screen host genotypes in the laboratory for low production of the striga seed germination stimulant. Further laboratory assays are needed which allow the non-destructive, rapid and inexpensive evaluation of individual plants for additional resistance mechanisms. Field screening for striga resistance is hampered by high microvariability in African soils, heterogeneity of natural infestations, and concomitant large environmental effects on striga emergence. An improved field testing methodology should include one or several of the following practices: field inoculation with striga seeds; appropriate experimental design including elevated replication number; specific plot layout; use of appropriate susceptible and resistant checks; evaluation in adjacent infested and uninfested plots; and the use of selection indices derived from emerged striga counts, striga vigor, and grain yield or a host plant damage score. Due to the extreme variability of the parasite and significant genotype×environment interaction effects, multi-locational screening is recommended to obtain materials with stable performance. Additional strategies include: careful definition of the target environments; determination of the most important selection traits in each target environment; characterization of crop germplasm and improvement of available sources of resistance for better agronomic performance; transfer and pyramiding of resistance genes into adapted, farmer-selected cultivars; development of striga-resistant parent lines for hybrid or synthetic cultivars; and development of random-mating populations with multiple sources of resistance. The development of marker-assisted selection techniques for broad-based, polygenic striga resistance is underway. This approach is particularly promising because striga resistance tests are difficult, expensive, and sometimes unreliable; the parasite is quarantined; and some resistance genes are recessive. Transgenic, herbicide-tolerant sorghums could contribute to an immediate, cost-effective control of striga by herbicides, but such cultivars are not yet available. The selection of sorghum cultivars with specific adaptation to integrated striga management approaches could contribute to sustainable sorghum production in striga-infested areas of sub-Saharan Afric

    GRAVITY: the Calibration Unit

    Full text link
    We present in this paper the design and characterisation of a new sub-system of the VLTI 2nd generation instrument GRAVITY: the Calibration Unit. The Calibration Unit provides all functions to test and calibrate the beam combiner instrument: it creates two artificial stars on four beams, and dispose of four delay lines with an internal metrology. It also includes artificial stars for the tip-tilt and pupil guiding systems, as well as four metrology pick-up diodes, for tests and calibration of the corresponding sub-systems. The calibration unit also hosts the reference targets to align GRAVITY to the VLTI, and the safety shutters to avoid the metrology light to propagate in the VLTI-lab. We present the results of the characterisation and validtion of these differrent sub-units.Comment: 12 pages, 11 figures. Proceeding of SPIE 9146 "Optical and Infrared Interferometry IV

    Feynman diagrams versus Fermi-gas Feynman emulator

    Get PDF
    Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intricate quantum statistics at play. Here we present a cross-validation between a new theoretical approach, Bold Diagrammatic Monte Carlo (BDMC), and precision experiments on ultra-cold atoms. Specifically, we compute and measure with unprecedented accuracy the normal-state equation of state of the unitary gas, a prototypical example of a strongly correlated fermionic system. Excellent agreement demonstrates that a series of Feynman diagrams can be controllably resummed in a non-perturbative regime using BDMC. This opens the door to the solution of some of the most challenging problems across many areas of physics

    The GRAVITY metrology system: modeling a metrology in optical fibers

    Full text link
    GRAVITY is the second generation VLT Interferometer (VLTI) instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging. The laser metrology system of GRAVITY is at the heart of its astrometric mode, which must measure the distance of 2 stars with a precision of 10 micro-arcseconds. This means the metrology has to measure the optical path difference between the two beam combiners of GRAVITY to a level of 5 nm. The metrology design presents some non-common paths that have consequently to be stable at a level of 1 nm. Otherwise they would impact the performance of GRAVITY. The various tests we made in the past on the prototype give us hints on the components responsible for this error, and on their respective contribution to the total error. It is however difficult to assess their exact origin from only OPD measurements, and therefore, to propose a solution to this problem. In this paper, we present the results of a semi-empirical modeling of the fibered metrology system, relying on theoretical basis, as well as on characterisations of key components. The modeling of the metrology system regarding various effects, e.g., temperature, waveguide heating or mechanical stress, will help us to understand how the metrology behave. The goals of this modeling are to 1) model the test set-ups and reproduce the measurements (as a validation of the modeling), 2) determine the origin of the non-common path errors, and 3) propose modifications to the current metrology design to reach the required 1nm stability.Comment: 20 pages, 19 figures. Proceeding of SPIE 9146 "Optical and Infrared Interferometry IV

    Burgers velocity fields and dynamical transport processes

    Full text link
    We explore a connection of the forced Burgers equation with the Schr\"{o}dinger (diffusive) interpolating dynamics in the presence of deterministic external forces. This entails an exploration of the consistency conditions that allow to interpret dispersion of passive contaminants in the Burgers flow as a Markovian diffusion process. In general, the usage of a continuity equation tρ=(vρ)\partial_t\rho =-\nabla (\vec{v}\rho), where v=v(x,t)\vec{v}=\vec{v}(\vec{x},t) stands for the Burgers field and ρ\rho is the density of transported matter, is at variance with the explicit diffusion scenario. Under these circumstances, we give a complete characterisation of the diffusive matter transport that is governed by Burgers velocity fields. The result extends both to the approximate description of the transport driven by an incompressible fluid and to motions in an infinitely compressible medium.Comment: Latex fil

    Selection methods Part 4: Developing open-pollinated varieties using recurrent selection methods

    Get PDF
    corecore