16 research outputs found
Gustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography
Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the 'top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7 +/- 34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2 +/- 56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC
Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea
Background: Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is
usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of
oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which
occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation
(SpO2) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied.
The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring
interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA.
Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively
subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was
instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fastresponse
oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2
and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA.
Results: Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE]
and minimum values [83.9 ± 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial
SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg) was significantly
lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011). In contrast to SpO2, the minimum and maximum values of
PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 ± 3.9
mmHg) and minimum (43.7 ± 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first
apnea dip, respectively.
Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring
interruption of O2 supply induced by obstructive apneas mimicking OSA