72 research outputs found

    Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity

    Get PDF
    We compared the metabolic responses of leaves and roots of two Eucalyptus globulus Labill. clones differing in drought sensitivity to a slowly imposed water deficit. Responses measured included changes in concentrations of soluble and insoluble sugars, proline, total protein and several antioxidant enzymes. In addition to the general decrease in growth caused by water deficit, we observed a decrease in osmotic potential when drought stress became severe. In both clones, the decrease was greater in roots than in leaves, consistent with the observed increases in concentrations of soluble sugars and proline in these organs. In roots of both clones, glutathione reductase activity increased significantly in response towater deficit, suggesting that this enzyme plays a protective role in roots during drought stress by catalyzing the catabolism of reactive oxygen species. Clone CN5 has stress avoidance mechanisms that account for its lower sensitivity to drought compared with Clone ST51

    Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern

    Get PDF
    During post-harvest storage, potato tubers age as they undergo an evolution of their physiological state influencing their sprouting pattern. In the present study, physiological and biochemical approaches were combined to provide new insights on potato (Solanum tuberosum L. cv. Désirée) tuber ageing. An increase in the physiological age index (PAI) value from 0.14 to 0.83 occurred during storage at 4 °C over 270 d. Using this reference frame, a proteomic approach was followed based on two-dimensional electrophoresis. In the experimental conditions of this study, a marked proteolysis of patatin occurred after the PAI reached a value of 0.6. In parallel, several glycolytic enzymes were up-regulated and cellular components influencing protein conformation and the response to stress were altered. The equilibrium between the 20S and 26S forms of the proteasome was modified, the 20S form that recycles oxidized proteins being up-regulated. Two proteins belonging to the cytoskeleton were also differentially expressed during ageing. As most of these changes are also observed in an oxidative stress context, an approach focused on antioxidant compounds and enzymes as well as oxidative damage on polyunsaturated fatty acids and proteins was conducted. All the changes observed during ageing seemed to allow the potato tubers to maintain their radical scavenging activity until the end of the storage period as no accumulation of oxidative damage was observed. These data are interpreted considering the impact of reactive oxygen species on the development and the behaviour of other plant systems undergoing ageing or senescence processes

    Differential gene expression in two potato lines differing in their resistance to Phytophthora infestans

    Full text link
    Horizontal resistance to late blight in the potato is a primary objective of many breeding programs. Knowledge of the physiological and biochemical mechanisms underlying it, however, is scarce. The purpose of the present study was the identification of these physiological and biochemical factors in plant material obtained by crossing a late blight resistant Solanum phureja clone with a susceptible dihaploid of S. tuberosum subsp. tuberosum. The mRNA RT-PCR differential display method was used to compare the gene expression patterns of a resistant hybrid with that of a susceptible one. By sequence homology, we identified several genes with diverse functions, including genes known to be involved in resistance or stress responses and genes known to be involved in primary or secondary metabolism

    Characterization of grapevine accessions from Ukraine using microsatellite markers

    No full text
    Forty-seven wine and table grape accessions representing cultivars widely grown in Ukraine and 28 reference accessions were genotyped at six microsatellite loci (VVS2, VVMD5, VVMD7, VVMD27, VrZAG62, and VrZAG79) in order to solve accession labeling problems among Ukrainian accessions, characterize their genetic diversity, and establish genetic relationships with other European grapevine cultivars. Genotypes were standardized to meet the requirements of the European Vitis Database. Genetic diversity (H E = 0.845) and allelic richness (A S = 8.09 alleles/locus/random sample of 16 individuals) were found to be higher in the Ukrainian collection than in any other geographical region, based on previously published studies on grapevine accessions. No geographic structure was identified in the total data set. However, winegrapes were significantly differentiated from table grapes and a Bayesian method detected two genetic clusters, one containing mainly table and Muscat grapes and the other mainly winegrape accessions from throughout Europe, including Ukraine. These results highlight the contribution of Muscat and European winegrapes in the breeding design of Ukrainian varieties and suggest that selection and historical and contemporary movement of germplasm are major factors shaping the structure of the grapevine gene pool. The genetically rich and diversified gene pool of Ukrainian varieties represents valuable source material for future sustainable breeding and improvement of grapevine. Copyright © 2008 by the American Society for Enology and Viticulture. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Silicon reduces zinc absorption and triggers oxidative tolerance processes without impacting growth in young plants of hemp (Cannabis sativa L.)

    No full text
    Hemp (Cannabis sativa L.) is a promising crop for non-food agricultural production on soils contaminated by moderate doses of heavy metals, while silicon, as a beneficial element, is frequently reported to improve stressed plant behavior. Using a hydroponic system, plants of Cannabis sativa (cv. Santhica 27) were exposed for 1 week to 100 µM Zn in the presence or absence of 2 mM Si. Zinc accumulated in all plant organs but was mainly sequestered in the roots. Additional Si reduced Zn absorption but had no impact on Zn translocation. Zn accumulation had a slight negative impact on leaf number, stem length, and chlorophyll content, and additional Si did not mitigate these symptoms. Exogenous Si reduced the Zn-induced membrane lipid peroxidation (assessed by malondialdehyde quantification) and increased the total antioxidant activities estimated by the FRAP index. In the absence of Si, leaf phytochelatin and total glutathione were the highest in Zn-treated plants and Si significantly decreased their concentrations

    Copper trafficking in plants and its implication on cell wall dnamics

    No full text
    In plants, copper (Cu) acts as essential cofactor of numerous proteins. While the definitive number of these so-called cuproproteins is unknown, they perform central functions in plant cells. As micronutrient, a minimal amount of Cu is needed to ensure cellular functions. However, Cu excess may exert in contrast detrimental effects on plant primary production and even survival. Therefore it is essential for a plant to have a strictly controlled Cu homeostasis, an equilibrium that is both tissue and developmentally influenced. In the current review an overview is presented on the different stages of Cu transport from the soil into the plant and throughout the different plant tissues. Special emphasis is on the Cu-dependent responses mediated by the SPL7 transcription factor, and the crosstalk between this transcriptional regulation and microRNA-mediated suppression of translation of seemingly non-essential cuproproteins. Since Cu is an essential player in electron transport, we also review the recent insights into the molecular mechanisms controlling chloroplastic and mitochondrial Cu transport and homeostasis. We finally highlight the involvement of numerous Cu-proteins and Cu-dependent activities in the properties of one of the major Cu-accumulation sites in plants: the cell wall

    Silicon and plants : current knowledge and perspective

    Get PDF
    Elemental silicon (Si), after oxygen, is the second most abundant element in the earth’s crust, which is mainly composed of silicates. Si is not considered essential for plant growth and development, however, increasing evidence in the literature shows that this metalloid is beneficial to plants, especially under stress conditions. Indeed Si alleviates the toxic effects caused by abiotic stresses, e.g., salt stress, drought, heavy metals, to name a few. Biogenic silica is also a deterrent against herbivores. Additionally, Si ameliorates the vigor of plants and improves their resistance to exogenous stresses. The protective role of Si was initially attributed to a physical barrier fortifying the cell wall (e.g., against fungal hyphae penetration), however, several studies have shown that the action of this element on plants is far more complex, as it involves a cross-talk with the cell interior and an effect on plant metabolism. In this study the beneficial role of Si on plants will be discussed, by reviewing the available data in the literature. Emphasis will be given to the protective role of Si during (a)biotic stresses and in this context both priming and the effects of Si on endogenous phytohormones will be discussed. A whole section will be devoted to the use of silica (SiO2) nanoparticles, in the light of the interest that nanotechnology has for agriculture. The paper also discusses the potential technological aspects linked to the use of Si in agriculture and to modify/improve the physical parameters of plant fibers. The study indeed provides perspectives on the use of Si to increase the yield of fiber crops and to improve the thermal stability and tensile strength of natural fibers
    corecore