1,353 research outputs found
Squeezed pulsed light from a fiber ring interferometer
Observation of squeezed noise, 5 +/- 0.3 dB below the shot noise level, generated with pulses in a fiber ring interferometer is reported. The interferometric geometry is used to separate the pump pulse from the squeezed vacuum radiation. A portion of the pump is reused as the local oscillator in a homodyne detection. The pump fluctuations are successfully subtracted and shot noise limited performance is achieved at low frequencies (35-85 KHz). A possible utilization of the generated squeezed vacuum in improving a fiber gyro's signal to noise ratio is discussed
PT-symmetric laser-absorber
In a recent work, Y.D. Chong et al. [Phys. Rev. Lett. {\bf 105}, 053901
(2010)] proposed the idea of a coherent perfect absorber (CPA) as the
time-reversed counterpart of a laser, in which a purely incoming radiation
pattern is completely absorbed by a lossy medium. The optical medium that
realizes CPA is obtained by reversing the gain with absorption, and thus it
generally differs from the lasing medium. Here it is shown that a laser with an
optical medium that satisfies the parity-time symmetry
condition for the dielectric
constant behaves simultaneously as a laser oscillator (i.e. it can emit
outgoing coherent waves) and as a CPA (i.e. it can fully absorb incoming
coherent waves with appropriate amplitudes and phases). Such a device can be
thus referred to as a -symmetric CPA-laser. The general
amplification/absorption features of the CPA-laser below lasing
threshold driven by two fields are determined.Comment: 5 pages; to be published in Phys. Rev. A (Rapid Communications
Non-exponential decay via tunneling in tight-binding lattices and the optical Zeno effect
An exactly-solvable model for the decay of a metastable state coupled to a
semi-infinite tight-binding lattice, showing large deviations from exponential
decay in the strong coupling regime, is presented. An optical realization of
the lattice model, based on discrete diffraction in a semi-infinite array of
tunneling-coupled optical waveguides, is proposed to test non-exponential decay
and for the observation of an optical analog of the quantum Zeno effect
Optical Lenses for Atomic Beams
Superpositions of paraxial laser beam modes to generate atom-optical lenses
based on the optical dipole force are investigated theoretically. Thin, wide,
parabolic, cylindrical and circular atom lenses with numerical apertures much
greater than those reported in the literature to date can be synthesized. This
superposition approach promises to make high quality atom beam imaging and
nano-deposition feasible.Comment: 10 figure
Generation and manipulation of squeezed states of light in optical networks for quantum communication and computation
We analyze a fiber-optic component which could find multiple uses in novel
information-processing systems utilizing squeezed states of light. Our approach
is based on the phenomenon of photon-number squeezing of soliton noise after
the soliton has propagated through a nonlinear optical fiber. Applications of
this component in optical networks for quantum computation and quantum
cryptography are discussed.Comment: 12 pages, 2 figures; submitted to Journal of Optics
On the attenuation coefficient of monomode periodic waveguides
It is widely accepted that, on ensemble average, the transmission T of guided
modes decays exponentially with the waveguide length L due to small
imperfections, leading to the important figure of merit defined as the
attenuation-rate coefficient alpha = -/L. In this letter, we evidence
that the exponential-damping law is not valid in general for periodic monomode
waveguides, especially as the group velocity decreases. This result that
contradicts common beliefs and experimental practices aiming at measuring alpha
is supported by a theoretical study of light transport in the limit of very
small imperfections, and by numerical results obtained for two waveguide
geometries that offer contrasted damping behaviours
Decoherence of Quantum-Enhanced Timing Accuracy
Quantum enhancement of optical pulse timing accuracy is investigated in the
Heisenberg picture. Effects of optical loss, group-velocity dispersion, and
Kerr nonlinearity on the position and momentum of an optical pulse are studied
via Heisenberg equations of motion. Using the developed formalism, the impact
of decoherence by optical loss on the use of adiabatic soliton control for
beating the timing standard quantum limit [Tsang, Phys. Rev. Lett. 97, 023902
(2006)] is analyzed theoretically and numerically. The analysis shows that an
appreciable enhancement can be achieved using current technology, despite an
increase in timing jitter mainly due to the Gordon-Haus effect. The decoherence
effect of optical loss on the transmission of quantum-enhanced timing
information is also studied, in order to identify situations in which the
enhancement is able to survive.Comment: 12 pages, 4 figures, submitte
Capacity of nonlinear bosonic systems
We analyze the role of nonlinear Hamiltonians in bosonic channels.
We show that the information capacity as a function of the channel energy is
increased with respect to the corresponding linear case, although only when the
energy used for driving the nonlinearity is not considered as part of the
energetic cost and when dispersive effects are negligible.Comment: 6 pages, 3 figure
Large-area, wide-angle, spectrally selective plasmonic absorber
A simple metamaterial-based wide-angle plasmonic absorber is introduced,
fabricated, and experimentally characterized using angle-resolved infrared
spectroscopy. The metamaterials are prepared by nano-imprint lithography, an
attractive low-cost technology for making large-area samples. The matching of
the metamaterial's impedance to that of vacuum is responsible for the observed
spectrally selective "perfect" absorption of infrared light. The impedance is
theoretically calculated in the single-resonance approximation, and the
responsible resonance is identified as a short-range surface plasmon. The
spectral position of the absorption peak (which is as high as 95%) is
experimentally shown to be controlled by the metamaterial's dimensions. The
persistence of "perfect" absorption with variable metamaterial parameters is
theoretically explained. The wide-angle nature of the absorber can be utilized
for sub-diffraction-scale infrared pixels exhibiting spectrally selective
absorption/emissivity.Comment: 7 pages, 6 figures, submitted to Phys. Rev.
Information rate of waveguide
We calculate the communication capacity of a broadband electromagnetic
waveguide as a function of its spatial dimensions and input power. We analyze
the two cases in which either all the available modes or only a single
directional mode are employed. The results are compared with those for the free
space bosonic channel.Comment: 5 pages, 2 figures. Revised version (minor changes
- …