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Abstract

Superpositions of paraxial laser beam modes to generate atom-optical lenses based on the optical

dipole force are investigated theoretically. Thin, wide, parabolic, cylindrical and circular atom

lenses with numerical apertures much greater than those reported in the literature to date can be

synthesized. This superposition approach promises to make high quality atom beam imaging and

nano-deposition feasible.
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I. INTRODUCTION

The field of atom-optics offers considerable potential in applied and fundamental physics,

both for atom beam lithography (to create nano-structures) [1, 2] and for atom beam mi-

croscopy [3, 4]. Here, the use of the optical dipole force using far detuned laser light for the

manipulation of neutral atoms is considered. In this regime it yields a conservative potential

for the manipulation of atoms that is proportional to the laser light intensity [1, 5].

Already in 1978 Ashkin’s group demonstrated neutral atom beam focusing using the

optical dipole force [6]. Many techniques to focus atomic beams have been tried since:

mirrors [7, 8], transmission gratings [9, 10], holographic reflection-gratings [11], electro-static

lenses [12], magnetic lenses [1, 13, 14, 15, 16] or magnetic mirrors [17], nano-apertures [18,

19, 20], and optical setups [1, 6, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] relying on

the optical dipole force [1, 5].

Amongst optical dipole force approaches there are schemes based on pulsed laser config-

urations [21, 22], light confined by nano-apertures [18], single-mode hollow beams [6, 23, 24]

or standing wave setups that yield tightly spaced ridges of the atomic deposition pat-

terns [1, 25, 26, 27, 28]. Standing wave pattern approaches can also yield other deposition

patterns [29, 30], but because of the high spatial frequencies involved, smooth profiles such

as those desired for aberration-free atom-lenses wider than 200 nm cannot be synthesized

with this approach [1, 26, 30, 31].

In the case of standing wave setups [1, 30] spherical aberrations give rise to pronounced

pedestals, filling the gaps between patterned areas [1, 25, 30]. This makes it impossible to

lay down separate nano-wires. A pulsed approach should reduce the pedestal problem [32]

but remains constrained by the short spatial wavelengths typical for standing wave ap-

proaches [33]. A related approach [27], that suffers less from pedestal problems, uses atomic

de-excitation processes creating an effective transmission mask for excited noble-gas atoms

to etch structures. Unfortunately, it appears to be unsuitable for direct deposition of metal

atoms (they tend to stick to the deposition area regardless of their internal state). Its inher-

ent filtering reduces atomic deposition rates and, more importantly, it does not redirect the

center of mass of atomic motion and thus cannot be used for traditional imaging of atomic

beams.

Similar problems occur in the application of single-mode hollow laser beams [23, 24] as
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optical imaging elements. Their waist is potentially wide, but their elongation leads to

thick lenses with small numerical apertures: for realistic setups a diameter of the transverse

parabolic part of the potential of less than 200 nm arises in conjunction with focal lengths

in the micrometer range [18, 23, 24] yielding unsatisfactorily small numerical apertures for

atomic focussing. This implies that one would have to start out with already well focussed

atomic beams and, yet, the resulting atomic point-spread function remains unsuitably wide.

None of the approaches mentioned so far has been adopted as a solution for the problem

of imaging of atomic beams in atomic microscopy [3, 4] or direct atom-deposition litho-

graphy [1, 2]: a viable atom-optical lens still needs to be found.

FIG. 1: (Color online) Arrangement of beams.

Here, it is shown that only the superposition of many laser modes [34, 35, 36] will allow

us to generate wide atom-optical lenses based on the optical dipole force. We will find that

widening the beams’ waists is not a solution if atomic lenses with large numerical apertures

are desired, because prohibitive increases in laser power are necessary. The idea of this paper

is to superpose several odd Hermite-Gaussian TEMmn-modes, ψm,n [37, 38, 39], such that

all non-linear terms in the dependence of the electric field on the (transverse) x-direction are

optimally suppressed, see Fig. 1. This generates an electric field profile that varies linearly

across a large part of the laser beam’s cross section, see Fig. 2, and yields the desired

parabolic laser intensity profile to generate an aberration-free atom-optical lens.

After an introduction of the underlying idea in Section II, its possible implementation

using Hermite-Gaussian modes to generate cylindrical lenses is described in Section III. Sec-

tion IV generalizes this approach to a crossed beam configuration that yields thin spherical

lenses. We conclude in Section V.
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FIG. 2: (Color online) Electric field profile, E2J+1(x, 0, 0), at focal cross-section of Hermite-Gauss

beams comprising superpositions of up to 23rd order odd modes (i.e. 2J + 1 = 1, 3, . . . , 23; x-axis

in units of beam waist w0x, total cross-sectional beam power normalized to unity, Rayleigh lengths

kept constant, ǫ0ω
2
L/2 set to unity).

II. SUPERPOSITIONS OF ODD MODES

We now consider cylindrical atom-lenses with a parabolic modulation in the x-direction,

see Fig. 1; most of what follows can be translated into the scenario of circular lenses for

which atomic beams co-propagate with the focussing laser beams [6, 23] on their optical

axis – instead of crossing through it. Such circular lenses would require the use of Laguerre-

Gaussian instead of Hermite-Gaussian modes [23] but they have the disadvantage of yielding

either tiny lenses (in the case of strongly focussed laser beams) or thick lenses (for less

focussed laser beams) [23]. We therefore do not investigate setups with laser beams co-

propagating with the atomic beam here; instead, we will show in Section IV how to create

a thin spherical lens using a combination of two orthogonally crossed multimode Hermite-

Gaussian laser beams.

A. Hermite-Gaussian modes

Let us consider modes, ψm,n [37, 38, 39], with transverse beam coordinates x and y

propagating in the z-direction. The Rayleigh lengths zRx
and zRy

associated with the two

transverse coordinates, x and y, can be different from each other (focussed by different

cylindrical lenses, say). In this case two different associated beam waist radii, w0x and
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w0y, and Gouy-phases, φx(z) and φy(z) arise. In the paraxial approximation the normalized

modes have the form

ψm,n(r) =
√ √

2
wx(z)

ϕm

( √
2 x

wx(z)

)

exp

(

ikL

2

x2

Rx(z)

)

exp

(

−i(m+
1

2
)φx(z)

)

×
√ √

2
wy(z)

ϕn

( √
2 y

wy(z)

)

exp

(

ikL

2

y2

Ry(z)

)

exp

(

−i(n +
1

2
)φy(z)

)

. (1)

Here, r = (x, y, z) is the position vector, ωL the frequency of the monochromatic laser,

kL = ωL/c = 2π/λL its wavenumber, and ϕm(ξ) = Hm(ξ) exp(−ξ2/2)/
√

2mm!
√
π, (m =

0, 1, 2, . . .), with the Hermite polynomials Hm [37, 38, 39]. The wave front radii R(z) =

(z2+z2
R)/z, the beam radii w(z) = w0

√

1 + z2/z2
R with w0 =

√

λLzR/π, and the longitudinal

Gouy-phase shifts [37, 38, 39], φ(z) = arctan(z/zR), are all parameterized by the beams’

Rayleigh lengths zR; strictly speaking by zRx
and zRy

, respectively.

In a configuration, such as that displayed in Fig. 1, one can generate [34, 36] a wide cylin-

drical atom-lens using a laser beam with an electric field composed of a suitable combination

of odd modes

Ψ2J+1(r) =
J

∑

j=0

c2j+1 ψ2j+1,0(r) . (2)

Here, the beam is modulated in the x-direction whereas for the y-direction the purely Gaus-

sian lowest order mode ϕ0 is employed. Note that this allows us to make the lens ‘thin’

in the y-direction. With increasing cutoff, J , the superposition pattern becomes increas-

ingly dephased due to the action of Gouy’s phase [35], this will be further investigated in

Section IV.

Following reference [38] the modes in Equation (1) yield an electric field which is polarized

in the y-direction with a small contribution in the z-direction due to the tilt of wave fronts

off the beam axis (x̂, ŷ, ẑ are the unit-vectors and ℜ stands for real-part)

E2J+1(r; t) = ℜ{[ŷ ωL Ψ2J+1 + ẑ ic
∂Ψ2J+1

∂x
]ei(kLz−ωLt)} . (3)

For beams that are not too tightly focused we neglect the transverse derivatives. The

associated time-averaged light intensity distribution then has the form [38]

I2J+1(r) = ǫ0
〈

E2J+1(r, t)
2
〉

≈ ǫ0
2
ω2

L |Ψ2J+1(r)|2 . (4)
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B. Normalization and Intensity Scaling

With the normalized modes of Eq. (1) and assuming that the sum of the coefficients
∑

|c2j+1|2 in Eq. (2) is unity we use the normalization

∫ ∞

−∞

∫ ∞

−∞

dx dy |ψ2J+1(x, y, z)|2 =
2

ǫ0ω2
L

∫ ∞

−∞

∫ ∞

−∞

dx dy I2J+1(x, y, z)|2 = 1 . (5)

Assuming validity of the Raman-Nath approximation of negligible transverse motion of

the atoms ((x, z) = const.) [40], the atoms experience the y-integrated intensity distribution

of the laser field given by

Ī2J+1(x, z) =

∫ ∞

−∞

dy I2J+1(r) =
ǫ0ω

2
L

2

√
2

wx(z)

∣

∣

∣

∣

∣

J
∑

j=0

ϕ2j+1(

√
2x

wx(z)
) e−i(j+ 1

2
)φx(z)

∣

∣

∣

∣

∣

2

. (6)

We note that this integrated intensity Ī of beams of fixed total power reduces inversely

proportionally to their width w0x, that is, their field amplitudes scale with w
−1/2
0x . Fur-

thermore the field gradients diminish with w−1
0x . This implies that the effective curvature

of the integrated laser light intensity, |∇Ψ|2, responsible for atomic focussing scales with

w−3
0x . We face an unfavourable cubic scaling with the beam width if we attempt to expand a

laser beam transversally in order to widen the effective lens without weakening its refractive

power. Additionally, as we will show below, pure modes have small useful areas to generate

lenses, the combination of these two factors makes a pure mode approach unfeasible. It

forces us to employ the mode superpositions studied here.

C. Optical Dipole Force

We assume that the interaction between atoms and the laser light is well described by

a two-level scheme (excited state ‘e’ and ground state ‘g’) in rotating wave approximation

with effective atomic line width Γ and resonance frequency ω = ωe − ωg. This leads to the

expression I(r) Γ2/(2IS) = Ω(r)2 for the Rabi-frequency Ω as a function of the ratio of the

local laser intensity I(r) and the transition’s saturation intensity IS = πhcΓ/(3λ3) [5, 26].

With sufficiently weak laser intensity I and sufficiently large detuning δω = ωL − ω of the

laser frequency ωL from the atomic transition frequency ω, the AC-Stark shift gives rise to
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a conservative optical dipole potential which, to first order in I/IS, has the form [5, 41]

Uω ≈ ~ Γ2

8 δω

I(r)

IS
. (7)

We can determine the atomic de Broglie wave number κ of atoms with mass M and initial

kinetic energy K0 = (~κ0)
2/(2M) in terms of their kinetic energy K. Disregarding Doppler

detuning, and assuming the validity of the Raman-Nath approximation (K0 ≫ Uω), this

allows us to calculate the associated phase shift

∆φ(x, z) ≈
∫

dy(κ(r) − κ0) =

√
2MK0

~

∫

dy(

√

K

K0

− 1) (8)

≈
√

2MK0

~

∫

dy (

√

1 − Uω

K0

− 1) ≈ −
√

2M Γ2

16
√
K0ISδω

Ī(x, z) (9)

The dependence of Eq. (9) on the inverse kinetic energy implies that best performance is

achieved for monochromatic atomic beams; the approximations are in accordance with the

Raman-Nath assumption [40]. Work by Drewsen et al. [42] showed that, for an atom-lens,

chromatic dispersion can be reduced by tilting the laser beam with respect to the passing

atomic beam, but the focal plane would have to be tilted as well. Such a tilt, however,

elliptically stretches out the atomic beam’s point-spread function.

Aside from spherical aberrations, there are detrimental noise sources due to spontaneous

emission of photons and light fluctuations. These tend to increase with increasing laser

intensity but can be decreased by increased detuning [5] or through the use of more compli-

cated optical level schemes [41]. Further discussion of their influences is beyond the scope

of this paper.

III. CYLINDRICAL LENSES

According to eqns. (8) and (9) parabolic optical potentials give rise to parabolic atom-

optical phase masks, as is required for ‘perfect’ atom lenses. In other words, we want

the y-integrated electric field profile to depend linearly on the x-direction, see Fig. 2. In

order to achieve this we integrate out the y-component, see Eq. (6), then Taylor-expand the

field profile and finally choose the coefficients in Eq. (2) so as to cancel terms non-linear

in x. Using the first 2J + 1 odd field modes all non-linear terms up to (2J + 1)th order

can be cancelled. The determination of the coefficients, c2j+1, involves the solution of a

linear equation system and is easily performed. For instance, for the third superposition

7
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FIG. 3: (Color online) Amplitude coefficients c2j+1 of Hermite-Gauss superpositions Ψ2J+1 of up

to 33rd order modes (2J + 1 = 1, 3, . . . , 33).

field, Ψ5, comprising Hermite-Gaussian modes ψ1,0, ψ3,0 and ψ5,0, the relative strengths of

the coefficients are c3 = c118
√

6/71 and c5 = c12
√

30/71. For a normalized superposition

the coefficient c1 should be chosen accordingly. The family of the first twelve normalized

superpositions {Ψ2J+1, 2J + 1 = 1, 3, . . . , 23} is displayed in Fig. 2, the associated set of

amplitude coefficients c2j+1 is shown in Fig. 3.

Mode-superpositions extend the “useful” linear part of the field profile yielding wider

parabolic intensity profiles. Figure 4 demonstrates that the useful parabolic part in the

focal intensity profile expands with the number of superposition modes 2J + 1 according

to the
√

2J + 1-scaling, expected for a harmonic oscillator [35]. Note, however, that the

refractive power of the wider lenses is reduced (its atom-optical focal length is lengthened),

because wider lenses have reduced transverse field gradients, see Fig. 2 and discussion fol-

lowing Eq. (6). In order to compensate for this loss of refractive power, we can increase the

transverse field gradient through either laser beam focussing in the x-direction, or through

an increase in laser beam power. Focussing in the y-direction makes no difference since only

the integrated intensity Ī matters. In the next subsection we show how much the power has

to be raised to keep the atomic lenses’ refractive powers equal. Subsequently, in Section IV,

we will investigate focussing in the x-direction; we will see that Gouy-dephasing constrains

this focussing, the lenses must not be shrunken below a certain limit.
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FIG. 4: (Color online) Integrated focal intensity profiles Ī(x, 0) of Hermite-Gauss superposition

beams comprising up to 23rd order modes, compare Fig. 2 (same units as in Fig. 2; vertical bars

mark location of position 0.57 ·
√

2J + 1 · w0x, confirming harmonic oscillator-scaling [35]).

0

50

100

150

–2 0 2 4

Ī
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FIG. 5: (Color online) Integrated focal intensity profiles Ī(x, 0) of Hermite-Gauss beams comprising

up to 23rd order modes, compare Fig. 2 (same units as in Fig. 4; total beam power adjusted such

that all profiles have same curvature at origin as the dotted line parabola).

A. Increased Beam Powers Compensates for Lenses Widening

If we increase the total beam power P2J+1 for wider beam profiles according to the ratios of

the modes’ transverse derivatives, P2J+1 = P1|∂xΨ1(x, 0, 0)/∂xΨ2J+1(x, 0, 0)|2, the weakened

gradient is power-compensated for by increased laser power. This way all optical potentials

give rise to atom-lenses with equal refractive power, see Fig. 5. The necessary beam power
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FIG. 6: (Color online) The increase in total beam power needed to achieve the power compensation

described in the text and displayed in Fig. 5 as a function of mode number (solid red line) scales

approximately like 20
31 · (2J + 1)3/2 (dotted black line).

increase to achieve this compensation is sketched in Fig. 6. The power savings due to our

multimode approach are quantified in Subsection IIIC.

B. Decreased Rayleigh-Lengths Compensate for Lenses Widening

Alternatively to the beam-power increases just discussed, we can keep the total beam

power for all beams equal and shrink the higher-order superposition-beams’ Rayleigh lengths

through increased beam focussing in the x-direction. This also allows us to compensate for

the gradient reduction observed in Fig. 2. The corresponding laser intensity profiles are

displayed in Fig. 7 and lend themselves to an efficiency analysis of the invested laser power.

The vertical bars in this figure mark the points, d2J+1, where each intensity curve deviates

from the enveloping parabola (dotted line) by 0.74 percent. They delineate the useful areas

of the lenses. Beyond a deviation of 0.74%, spherical aberrations distort the atomic point-

spread function of an imaged atomic beam too severely. The filled-in areas under the curves

in Fig. 7 represent the laser power fraction contributing to the atom lens in each case.

Higher-order superpositions clearly allow us to use the laser power much more efficiently.

This is quantified in the next subsection.
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FIG. 7: (Color online) Integrated focal intensity profiles Ī(x, 0) of Hermite-Gauss beams comprising

up to 23rd order modes, compare Fig. 2, and their 0.74%-deviation marks, d2J+1, which lie at

relative positions d2J+1/d1 = 1.00, 3.24, . . . , 8.70 from the origin, compare Table I (same units as

in Fig. 2; in contrast to Fig. 5 total beam power normalized to unity, but Rayleigh lengths zRx

readjusted such that all higher-order superpositions match up with curvature of the first mode

case Ψ1, see text).

C. Lens Quality and Power Savings

The 0.74%-criterion was extracted from the work by Gallatin and Gould [23] who con-

sidered, for example, the use of a 0.1 Watt laser detuned by roughly 40,000 linewidths. To

achieve acceptable performance, the effectively useful beam area was found to be only some

2d1 =140 nm wide (for a laser beam with a 2w0x = 2µm waist diameter [23]). In other words,

pure laser modes yield only a small useful window (in order to fulfill the 0.74%-deviation

criterion only about 2d1/(2w0x) =140 nm/2µm≈ 7% of a cylindrical lens diameter or only

the central 0.49 percent area of a circular lens are useful). Most of the laser power is wasted

in the wings if no suitable superpositions of higher-order modes are employed. In our case of

a cylindrical lens based on the Hermite-Gaussian mode ψ1,0, very similarly, approximately

d1/w0x =6% of the width of the beam is useful, see Fig. 7. Additionally to the quantification

of the useful area of the lenses, see Table I, this waste is meaningfully quantified through

the determination of the fraction of power E2J+1 the laser beam contributes to the ‘useful’

part of the lens profile. We define it as the ratio of the laser energy contributing to the area

11



TABLE I: Lens Parameters d2J+1 and E2J+1, compare Fig.7

2J + 1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

d2J+1/d1 1.00 3.24 4.75 5.74 6.45 7.00 7.42 7.78 8.06 8.32 8.53 8.70 8.87 9.01 9.15 9.27 9.36

E2J+1 [%] 0.048 1.6 5.1 9.1 13 16 20 23 25 28 30 32 33 35 37 38 39

E2J+1/E1 1 34 107 190 269 344 411 472 526 576 620 662 699 735 766 795 825

between the deviation points −d2J+1 < x < d2J+1, in terms of the total laser power, namely

E2J+1 =

∫ ∞

−∞
dy

∫ d2J+1

−d2J+1
dx I2J+1(x, y, 0)

∫ ∞

−∞
dy

∫ ∞

−∞
dx I2J+1(x, y, 0)

. (10)

Figure 7 and Table I summarize and quantify our findings. Specifically, Table I allows us

to compare values for a single-mode atom lens for which E1 = 0.048% with the superposition

approach. For example, compared to mode Ψ1 the relative power savings in case of super-

position Ψ33 is 825, this translates into a power utilization of E33 = 0.048%×825 = 39%. In

general the details of this behaviour depend on the chosen quality criterion but the underly-

ing scaling is straightforward to derive. The useful fraction of the laser beam is proportional

to a linear integral over the intensity and therefore grows with the third power of the position

of the deviation mark E2J+1/E1 = (d2J+1/d1)
3.

IV. SPHERICAL LENSES

We now want to investigate the constraints that arise when an identical copy of the laser

beam that travels along the z-axis, see Fig. 1, is additionally sent along the x-axis such that

their crossed configuration leads to the simultaneous application of two cylindrical lenses

giving rise to the application of a spherical lens to the atomic beam. Either the laser beams

are slightly displaced along the y-axis, or they are sufficiently detuned from each other such

that despite their spatial overlap no harmful interference occurs [43].

Gouy’s phase φ(z) = arctan(z/zR) ≈ z/zR, introduces relative phases between the modes

within each beam. Since the Gouy-phase varies strongest near the beam focus we have to

consider its mode dispersive effects [35]. If the beam is very strongly focussed (small value

of zRx
) the dephasing away from the focus z = 0 is so rapid that non-linear aberrations

12
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FIG. 8: (Color online) The left panel illustrates the behavior of the relative deviation of the

intensity distribution ∆Ī from zero as it approaches the 0.74%-deviation marks (top and bottom

grid). Here, ∆Ī23 is shown for the crossed configuration of two laser beams travelling along z and

x-axis respectively. The value of the Rayleigh length zRx at which we find that the oscillatory

behaviour of ∆Ī along a constant radial perimeter just exhausts the upper and lower limits set by

the deviation marks allows us to determine the associated value of zmin. The latter is plotted as

a function of maximum mode number, in the middle panel (the filled in red area is the forbidden

area of too tightly focussed beams). The values of zmin(2J + 1) in turn determine the positions of

the turning points 0.57 ·
√

2J + 1 ·w0x (top green line), the positions of the deviation-points d2J+1

(middle blue line) and the minimal beam widths w0x(2J + 1) (bottom red line), depicted in the

right panel in units of the laser’s wavelength λL.

degrade the desired linear field profile over the width of the atom-lens. In other words,

a lower limit for the Rayleigh lengths zmin(2J + 1) as a function of the number of used

modes ‘2J + 1’ has to be determined in order to guarantee moderate dephasing. Whereas

the absolute values for this lower limit are hard to derive from first principles, we can still

work out the correct scaling with the mode number:

The electric field is proportional to the superposition of the modes including the Gouy-

phase factors; this can be approximated by E2J+1 ∝
∑2J+1

j=1,3,... cjψje
ijφ ≈

∑2J+1
j=1,3,... cjψj(1 +

ijz/zRx
). The expansion coefficients are positive and the wave functions are real at the

focus z = 0. Since the first order term is purely imaginary the integrated intensity has to

depend on z quadratically: Ī2J+1(z) = Ī2J+1(0) · [1 + z2

z2
Rx

F2J+1 + O(z4)]. The term F2J+1

has a complicated dependence on the number of modes, but, containing the square of sums

of the form
∑2J+1

j=1,3,... jcjψj , is roughly proportional to (2J + 1)2. When we consider the
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relative deviation of the intensity profile near the focus from the focal intensity distribution,

∆Ī = Ī(z)−Ī(0)
Ī(0)

, we find ∆Ī2J+1 ∝ z2

z2
Rx

· (2J + 1)2. Additionally, we know that the widths

of the superpositions scale roughly like those of the harmonic oscillator [35], see Fig. 4,

namely z ∝
√

2J + 1. For constant relative intensity deviations ∆Ī2J+1 this implies const. =
√

2J+1
2

z2
Rx

· (2J + 1)2 or zRx
∝ (2J + 1)3/2. A numerical investigation, see Fig. 8, confirms

zmin(2J + 1) = 0.8 · λL · (2J + 1)3/2 as a good estimate for a lower bound on zRx
. This

relationship has been checked numerically and holds for 15 < 2J + 1 < 55. There is no

reason to believe deviations might occur for values of 2J + 1 > 55, but for small values of J

the assumptions used in the derivation of the scaling law do not hold accurately, see Fig. 4.

Instead, the expression zmin(2J +1) = 10.5 ·λL · (2J +1)1/2 gives a much better estimate for

zmin(2J+1) in the range of 1 < 2J+1 ≤ 13. These lower limits for zRx
imply that the beam

focus is several wavelengths wide and a posteriori confirms that the paraxial approximations

hold for all cases discussed here, since the largest beam opening angle conforming with the

lower limits presented here turns out to be roughly 7.5◦ for superposition Ψ3.

V. CONCLUSIONS

For a possible experimental implementation of the ideas presented here it should be

emphasized that throughout the use of a repulsive (blue-detuned) optical potential has been

assumed since it allows us to build focussing lenses with a dark center reducing detrimental

spontaneous emission noise. Equivalent logic applies to ‘concave’ atomic lenses which would

best be implemented in red detuning, with dark centers as well.

The Raman-Nath assumption becomes progressively worse the larger the numerical aper-

ture of a lens. Trajectory simulations show a ‘downhill’ drift of atomic paths that can partly

be compensated for by slightly weakening the rise of the potential through the suitable sub-

traction of higher-order terms that lead to slight non-harmonic modifications of the lens,

improving its performance. Clearly, if such fine-tuning is considered, the approximations

underlying Eq. (4) and Eq. (7) might not be permissible. These considerations are beyond

the scope of this paper.

The techniques for the coherent superposition of laser modes have been experimentally

demonstrated, see e.g. references [34, 36] and citations therein. We have found here that

using the mode-superposition approach allows for very considerable laser power savings and
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lenses can be made wider than is possible with pure modes. We come to the conclusion that

for the design of atomic lenses, based on the optical dipole force, it is possible and necessary

to coherently superpose suitable laser modes in order to create wide thin parabolic lenses

with large numerical apertures.

Obviously the approach presented here can be applied for the manipulation of stationary

atomic clouds just as well as for atomic beams [44, 45].
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