305 research outputs found
Tidally generated high-frequency internal wave packets and their effects on plankton in Massachussetts Bay
Tidally generated internal wave packets occur twice a day during late summer in Massachusetts Bay, U.S.A. The packets are formed at Stellwagen Bank and propagate into the Bay at about 60 cm sec—1; they dissipate in shallow water at the western side of the Bay. The dominant waves in packets have lengths of about 300 m, periods of between 8 and 10 min, and amplitudes of up to 30 m. Overturning of the waves has been observed acoustically over Stellwagen Bank, in the deep (80 m) waters in the center of the Bay, and during dissipation in shallow water. The effects of the internal waves on the distribution of plankton were investigated in August 1977 using an instrument package (Longhurst-Hardy Plankton Recorder, in situ fluorometer, CTD) towed either at a constant depth or following an isotherm through wave packets. Phytoplankton and zooplankton appear to be carried passively up and down by the internal waves; the data were insufficient to resolve any active response by zooplankton to vertical displacements by the waves. Vertical distributions of the plankton were altered by overturning of waves and subsequent mixing. Patterns of horizontal distributions of plankton determined by constant-depth tows were dominated by the effects of internal wave vertical displacements. Isotherm-following tows removed much of the variability due to wave displacement, but problems of following rapidly moving isotherms introduced considerable smaller-scale variability. Changes in zooplankton abundance on tow length scales (600-1200 m) were not correlated with temperature, salinity, or density; some significant correlations with chlorophyll fluorescence occurred when internal wave activity was present. Twice a day for several hours or more, phytoplankton were vertically displaced by as much as 30 m, with a period of about 10 min. The light level plant cells experienced varied from 0.1 to 26% of the ambient surface illumination. This rapid change in light should alter fluorescence yields of plant cells and affect continuous in situ measurements of chlorophyll fluorescence. The timing of internal wave packets varies with the semidiurnal tidal cycle and therefore interacts with the day-night cycle to significantly alter the light regime experienced by plant cells over a two-week period. This could affect the primary productivity of the Bay in the area affected by internal wave packets. The sporadic occurrence of internal wave overturning and mixing events in the deep waters of the Bay could enhance primary production by increasing nutrient input to the mixed layer. This effect should be greatly enhanced in the shallow waters where the internal waves dissipate. Comparison of acoustic and plankton recorder data showed that much of the intense acoustic backscattering seen in high-amplitude (10-20 m) internal waves is due to physical structure and processes, and not to the presence of zooplankton
Interlayer coupling in ferromagnetic semiconductor superlattices
We develop a mean-field theory of carrier-induced ferromagnetism in diluted
magnetic semiconductors. Our approach represents an improvement over standard
RKKY model allowing spatial inhomogeneity of the system, free-carrier spin
polarization, finite temperature, and free-carrier exchange and correlation to
be accounted for self-consistently. As an example, we calculate the electronic
structure of a MnGaAs/GaAs superlattice with alternating
ferromagnetic and paramagnetic layers and demonstrate the possibility of
semiconductor magnetoresistance systems with designed properties.Comment: 4 pages, 4 figure
Stability of trions in strongly spin-polarized two-dimensional electron gases
Low-temperature magneto-photoluminescence studies of negatively charged
excitons (X- trions) are reported for n-type modulation-doped ZnSe/Zn(Cd,Mn)Se
quantum wells over a wide range of Fermi energy and spin-splitting. The
magnetic composition is chosen such that these magnetic two-dimensional
electron gases (2DEGs) are highly spin-polarized even at low magnetic fields,
throughout the entire range of electron densities studied (5e10 to 6.5e11
cm^-2). This spin polarization has a pronounced effect on the formation and
energy of X-, with the striking result that the trion ionization energy (the
energy separating X- from the neutral exciton) follows the temperature- and
magnetic field-tunable Fermi energy. The large Zeeman energy destabilizes X- at
the nu=1 quantum limit, beyond which a new PL peak appears and persists to 60
Tesla, suggesting the formation of spin-triplet charged excitons.Comment: 5 pages (RevTex), 4 embedded EPS figs. Submitted to PRB-R
Theory of Magnetic Properties and Spin-Wave Dispersion for Ferromagnetic (Ga,Mn)As
We present a microscopic theory of the long-wavelength magnetic properties of
the ferromagnetic diluted magnetic semiconductor (Ga,Mn)As. Details of the host
semiconductor band structure, described by a six-band Kohn-Luttinger
Hamiltonian, are taken into account. We relate our quantum-mechanical
calculation to the classical micromagnetic energy functional and determine
anisotropy energies and exchange constants. We find that the exchange constant
is substantially enhanced compared to the case of a parabolic heavy-hole-band
model.Comment: 9 pages, 4 figure
Theory of Magnetic Anisotropy in III_{1-x}Mn_{x}V Ferromagnets
We present a theory of magnetic anisotropy in diluted magnetic semiconductors with carrier-induced
ferromagnetism. The theory is based on four and six band envelope functions
models for the valence band holes and a mean-field treatment of their exchange
interactions with ions. We find that easy-axis reorientations
can occur as a function of temperature, carrier density , and strain. The
magnetic anisotropy in strain-free samples is predicted to have a
hole-density dependence at small , a dependence at large , and
remarkably large values at intermediate densities. An explicit expression,
valid at small , is given for the uniaxial contribution to the magnetic
anisotropy due to unrelaxed epitaxial growth lattice-matching strains. Results
of our numerical simulations are in agreement with magnetic anisotropy
measurements on samples with both compressive and tensile strains. We predict
that decreasing the hole density in current samples will lower the
ferromagnetic transition temperature, but will increase the magnetic anisotropy
energy and the coercivity.Comment: 15 pages, 15 figure
A theory of ferromagnetism in planar heterostructures of (Mn,III)-V semiconductors
A density functional theory of ferromagnetism in heterostructures of compound
semiconductors doped with magnetic impurities is presented. The variable
functions in the density functional theory are the charge and spin densities of
the itinerant carriers and the charge and localized spins of the impurities.
The theory is applied to study the Curie temperature of planar heterostructures
of III-V semiconductors doped with manganese atoms. The mean-field,
virtual-crystal and effective-mass approximations are adopted to calculate the
electronic structure, including the spin-orbit interaction, and the magnetic
susceptibilities, leading to the Curie temperature. By means of these results,
we attempt to understand the observed dependence of the Curie temperature of
planar -doped ferromagnetic structures on variation of their
properties. We predict a large increase of the Curie Temperature by additional
confinement of the holes in a -doped layer of Mn by a quantum well.Comment: 8 pages, 7 figure
The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures
Motivation: Biomarker discovery from high-dimensional data is a crucial
problem with enormous applications in biology and medicine. It is also
extremely challenging from a statistical viewpoint, but surprisingly few
studies have investigated the relative strengths and weaknesses of the plethora
of existing feature selection methods. Methods: We compare 32 feature selection
methods on 4 public gene expression datasets for breast cancer prognosis, in
terms of predictive performance, stability and functional interpretability of
the signatures they produce. Results: We observe that the feature selection
method has a significant influence on the accuracy, stability and
interpretability of signatures. Simple filter methods generally outperform more
complex embedded or wrapper methods, and ensemble feature selection has
generally no positive effect. Overall a simple Student's t-test seems to
provide the best results. Availability: Code and data are publicly available at
http://cbio.ensmp.fr/~ahaury/
Algebraic Comparison of Partial Lists in Bioinformatics
The outcome of a functional genomics pipeline is usually a partial list of
genomic features, ranked by their relevance in modelling biological phenotype
in terms of a classification or regression model. Due to resampling protocols
or just within a meta-analysis comparison, instead of one list it is often the
case that sets of alternative feature lists (possibly of different lengths) are
obtained. Here we introduce a method, based on the algebraic theory of
symmetric groups, for studying the variability between lists ("list stability")
in the case of lists of unequal length. We provide algorithms evaluating
stability for lists embedded in the full feature set or just limited to the
features occurring in the partial lists. The method is demonstrated first on
synthetic data in a gene filtering task and then for finding gene profiles on a
recent prostate cancer dataset
- …