411 research outputs found

    Macroscopic effects in attosecond pulse generation

    Full text link
    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of self-compressed attosecond pulses. We show this effect experimentally, using long argon-filled gas cells as generating medium.Comment: 5 pages 4 figure

    Volatile Content of 4-Vesta: Evidence from Unequilibrated Eucrites

    Get PDF
    Eucrites are a class of basaltic meteorites that, along with the howardites and diogenites, likely derive from the asteroid 4-Vesta. This asteroid is depleted in moderately volatile elements relative to the Earth and carbonaceous chondrites. Extrapolation of this depletion trend predicts that bulk silicate 4-Vesta (BSV) contains at most 250-1000 g/g H2O, which is approximately a factor of two lower than the H2O content of Earth. To obtain more accurate H2O and F estimates for BSV, we examined four unequilibrated antarctic meteorites, Yamato(Y)-793548, Y-82210, Y-75011, and Y-74450, by EPMA and SIMS. Pyroxenes contain MgO-rich cores and FeO-rich rims, consistent with primary magmatic zoning. Volatile concentrations generally follow patterns expected for growth zoning with lower values in the cores and higher in the rims. These features indicate that thermal metamorphism and other post-crystallization processes did not significantly perturb the volatile contents of these unequilibrated eucrite pyroxenes. We used these data to derive best estimates for the BSV H2O and F content based on experimentally determined pyroxene-melt partition coefficients and models for magma generation on Vesta. In addition, we measured D/H in the early crystallizing pyroxenes and late crystallzing apatites. We find that the D/H of pyroxene and apatite are within error of one another as well as previous measurements of apatite in equilibrated eucrites. These results imply that degassing was minimal or did not fractionate D/H. Degassing may have been limited if eucrites were shallowly emplaced sills or dykes, or the total H2O content of the magmas was too low for vapor saturation. An alternative mechanism for limited D/H fractionation is that degassing did occur, but the H2/H2O of the exsolved vapor was approximately 15:85, as predicted from experiments

    Organic synthesis on Mars by electrochemical reduction of CO2

    Get PDF
    The sources and nature of organic carbon on Mars have been a subject of intense research. Steele et al. (2012) showed that 10 martian meteorites contain macromolecular carbon phases contained within pyroxene- and olivine-hosted melt inclusions. Here, we show that martian meteorites Tissint, Nakhla, and NWA 1950 have an inventory of organic carbon species associated with fluid-mineral reactions that are remarkably consistent with those detected by the Mars Science Laboratory (MSL) mission. We advance the hypothesis that interactions among spinel-group minerals, sulfides, and a brine enable the electrochemical reduction of aqueous CO2 to organic molecules. Although documented here in martian samples, a similar process likely occurs wherever igneous rocks containing spinel-group minerals and/or sulfides encounter brines

    Empirical comparison of high gradient achievement for different metals in DC and pulsed mode

    Full text link
    For the SwissFEL project, an advanced high gradient low emittance gun is under development. Reliable operation with an electric field, preferably above 125 MV/m at a 4 mm gap, in the presence of an UV laser beam, has to be achieved in a diode configuration in order to minimize the emittance dilution due to space charge effects. In the first phase, a DC breakdown test stand was used to test different metals with different preparation methods at voltages up to 100 kV. In addition high gradient stability tests were also carried out over several days in order to prove reliable spark-free operation with a minimum dark current. In the second phase, electrodes with selected materials were installed in the 250 ns FWHM, 500 kV electron gun and tested for high gradient breakdown and for quantum efficiency using an ultra-violet laser.Comment: 25 pages, 13 figures, 5 tables. Follow up from FEL 2008 conference (Geyongju Korea 2008) New Title in JVST A (2010) : Vacuum breakdown limit and quantum efficiency obtained for various technical metals using DC and pulsed voltage source

    In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer

    Get PDF
    BACKGROUND: Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important. METHODS: This study combined an in vitro digestion, a lactase treatment and the Caco-2 cell model to examine quercetin and quercetin glucoside uptake from shallot and apple homogenates. RESULTS: The in vitro digestion alone significantly decreased quercetin aglycone recovery from the shallot digestate (p < 0.05), but had no significant effect on quercetin-3-glucoside recovery (p > 0.05). Digestion increased the Caco-2 cell uptake of shallot quercetin-4'-glucoside by 2-fold when compared to the non-digested shallot. Despite the loss of quercetin from the digested shallot, the bioavailability of quercetin aglycone to the Caco-2 cells was the same in both the digested and non-digested shallot. Treatment with lactase increased quercetin recovery from the shallot digestate nearly 10-fold and decreased quercetin-4'-glucoside recovery by more than 100-fold (p < 0.05), but had no effect on quercetin recovery from apple digestates. Lactase treatment also increased shallot quercetin bioavailability to the Caco-2 cells approximately 14-fold, and decreased shallot quercetin-4'-glucoside bioavailability 23-fold (p < 0.05). These Caco-2 cells had lactase activity similar to that expressed by a lactose intolerant human. CONCLUSIONS: The increase in quercetin uptake following treatment with lactase suggests that dietary supplementation with lactase may increase quercetin bioavailability in lactose intolerant humans. Combining the digestion, the lactase treatment and the Caco-2 cell culture model may provide a reliable in vitro model for examining flavonoid glucoside bioavailability from foods
    corecore