Goldschmidt2017 Abstract

## Preliminary Data on new Olivine reference material MongOL Sh11-2 for *in-situ* microanalysis

BATANOVA V.  $^{1,2}$ , Sobolev A.V.  $^{1,2}$  Thompson J.M.  $^3$ , Danyushevsky L.  $^3$ , Goemann K.  $^4$ , Portnyagin M.  $^{5,2}$ , Garbe-Schoenberg D.  $^6$ , Hauri E.  $^7$ , Kimura J.-I.  $^8$ , Chang Q.  $^8$ , Senda R.  $^8$ , Chauvel C.  $^1$ , Campillo S.  $^1$ , and Ionov D.  $^9$ 

- <sup>1</sup> Univ. Grenoble Alpes, ISTerre, CNRS, IRD, IFSTTAR ,F-38000 Grenoble, France, valentina.batanova@univ-grenoble-alpes.fr
- <sup>2</sup> Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow, Russia
- <sup>3</sup> CODES, University of Tasmania, Tasmania, Hobart TAS 7001. Australia
- <sup>4</sup> SCL University of Tasmania, Tasmania, Hobart TAS 7001, Australia
- <sup>5</sup> GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- <sup>6</sup>Christian-Albrechts University of Kiel, Kiel, Germany
- <sup>7</sup>Carnegie Institution of Washington, Washington, DC, USA
- <sup>8</sup> Japan Agency for Marine-earth science and technology (JAMSTEC), Yokohama, Japan
- <sup>9</sup> Geosciences Montpellier, Univ. Montpellier, Montpellier, France

A new olivine reference material - MongOL Sh11-2 - for in-situ analysis has been prepared from a central portion of a large (20x20x10 cm) peridotite xenolith from a  $\sim 0.5$  Ga old basaltic breccia at Shavaryn-Tsaram, Tariat region, central Mongolia. The xenolith is a fertile mantle lherzolite with minimal signs of alteration during and after its transport to the surface. About 10 g of 0.5-2 mm gem quality olivine fragments were separated under binocular microscope and analysed by EPMA, LA-ICP-MS, SIMS and bulk analytical methods (ID ICP-MS for Mg and Fe, XRF, ICP-MS) in six laboratories worldwide for major and trace elements. The results show that the olivine fragments are homogeneous in Mg, Fe , Si and seventeen minor and trace elements. Minor inhomogeneity of  $\pm 9$ -13 % (2RSE) is observed for Al and P.

Preliminary reference and information concentrations  $\pm 2SE$  are (oxides in wt%, elements in mg g<sup>-1</sup>):  $SiO_2 = 40.74 \pm 0.29$ , MgO= $48.79 \pm 0.09$ , FeO= $10.17 \pm 0.02$ , Li= $2.19 \pm 0.17$ , Na= $127 \pm 10$ , Al= $238 \pm 20$ , Ca= $688 \pm 9$ , Sc= $3.4 \pm 0.3$ , Ti= $39 \pm 3$ , V= $5.7 \pm 0.3$ , Cr= $125 \pm 3$ , Mn= $1117 \pm 15$ , Co= $148 \pm 4$ , Ni= $2822 \pm 29$ , Cu= $1.13 \pm 0.07$ , Zn= $56 \pm 1.8$ , Y= $0.075 \pm 0.005$ , P= $67 \pm 9$ , Er= $0.013 \pm 0.0007$ , Tm= $0.003 \pm 0.0002$ , Yb= $0.029 \pm 0.0009$ , Lu= $0.007 \pm 0.0003$ .