31 research outputs found

    The influence of tactical positioning on performance in sprint cross-country skiing

    Get PDF
    The purpose of this study was to examine the influence of tactical positioning on performance in the heats of sprint cross-country (XC) skiing among men and women and the consistency of overtaking events over repeated competitions on the same racecourse. Thirty male and thirty female elite to world-class level skiers within each competition [(sprint International Ski and Snowboard Federation (FIS) points: 40 ± 21 vs. 35 ± 24)] performed two repeated world-cup competitions at four different venues (two in the classical and two in the skating style) between 2017 and 2020. The intermediate rankings at five checkpoints were analysed using television broadcasts of the competitions. Sprint time-trial (STT) rank correlated positively with the final rank for the seven men’s (ρ = .54-.82, P < .01) and the eight women’s (ρ = .40-.80, P < .05) competitions, while one of the classical competitions for males did not correlate significantly (P = .23). The strength of the correlation coefficients between intermediate ranks and final ranks during the heats increased gradually from the first to the last checkpoint among both sexes in the classical style (τ = ~0.26 to ~0.70) and in the skating style (τ = ~0.22 to ~0.82), in which the majority of performance-variance was decided before the start of the finish sprint. For both sexes, ~20 and 16 overtaking events were observed in each heat for the classical and skating style, respectively. There was a significant sex-difference in the number of overtaking events in one out of the 16 competitions (P < .01), but no differences across seasons for any competition (P = .051–796). Overall, this study showed the importance of tactical positioning for performance in sprint XC skiing, with the number of overtaking events being relatively consistent for competitions performed on the same racecourse

    Physiological and Biomechanical Determinants of Sprint Ability Following Variable Intensity Exercise When Roller Ski Skating

    Get PDF
    The most common race format in cross-country (XC) skiing is the mass-start event, which is under-explored in the scientific literature. To explore factors important for XC skiing mass-starts, the main purpose of this study was to investigate physiological and biomechanical determinants of sprint ability following variable intensity exercise when roller ski skating. Thirteen elite male XC skiers performed a simulated mass-start competition while roller ski skating on a treadmill. The protocol consisted of an initial 21-min bout with a varying track profile, designed as a competition track with preset inclines and speeds, directly followed by an all-out sprint (AOS) with gradually increased speed to rank their performance. The initial part was projected to simulate the “stay-in-the-group” condition during a mass-start, while the AOS was designed to assess the residual physiological capacities required to perform well during the final part of a mass-start race. Cardiorespiratory variables, kinematics and pole forces were measured continuously, and the cycles were automatically detected and classified into skating sub-techniques through a machine learning model. Better performance ranking was associated with higher VO2Max (r = 0.68) and gross efficiency (r = 0.70) measured on separate days, as well as the ability to ski on a lower relative intensity [i.e., %HRMax (r = 0.87), %VO2Max (r = 0.89), and rating of perceived exertion (r = 0.73)] during the initial 21-min of the simulated mass-start (all p-values < 0.05). Accordingly, the ability to increase HR (r = 0.76) and VO2 (r = 0.72), beyond the corresponding values achieved during the initial 21-min, in the AOS correlated positively with performance (both p < 0.05). In addition, greater utilization of the G3 sub-technique in the steepest uphill (r = 0.69, p < 0.05), as well as a trend for longer cycle lengths (CLs) during the AOS (r = 0.52, p = 0.07), were associated with performance. In conclusion, VO2Max and gross efficiency were the most significant performance-determining variables of simulated mass-start performance, enabling lower relative intensity and less accumulation of fatigue before entering the final AOS. Subsequently, better performance ranking was associated with more utilization of the demanding G3 sub-technique in the steepest uphill, and physiological reserves allowing better-performing skiers to utilize a larger portion of their aerobic potential and achieve longer CLs and higher speed during the AOS

    The effect of exercise intensity on speed and heart rate profiles, work rate and kinematics in skating cross-country skiing

    No full text
    The exercise intensity during cross-country skiing competitions fluctuates. However, it is presently not known to what extent this occurs during ski-specific training at the different intensities. The aim of the present study was to investigate the actual speed and heart rate profiles, work rate, and gross kinematic patterns. Seven elite male junior cross-country skiers were initially tested for peak oxygen uptake during treadmill roller ski skating in the laboratory. Thereafter, on a separate day, the skiers performed two 20-m maximal velocity tests in both uphill and flat terrain. The main experiment consisted of three 5-km of skiing with the skating technique in a competition track on snow at low- (LIT), moderate- (MIT), and high-intensity training (HIT) using a heart rate monitor and an inertial measurement unit (IMU) coupled to a global navigation satellite system (GNSS). Main findings were as follows: 1) the average racing speed, the relative heart rate and work rate increased with higher exercise intensity (P <0.05), and the differences was higher between MIT vs. LIT than MIT vs. HIT (P <0.05), 2) there was a shift in the delayed heart rate response, and the effect was larger with higher intensity, thus limiting the possibility for recovery during higher intensity, 3) more than half of the total time in all intensities was spent uphill, 4) the uphill sections were responsible for the greatest performance differences during HIT (P <0.05), 5) G2-Vmax correlated strongly with speed uphill HIT (r = 0.78, P < 0.05). Cross-country skiing in terms of speed, external work, metabolic intensity, and kinematics are clearly interval based, which makes ski-specific training in varying terrain unique. Hence, the effect of exercise intensity must especially be taken into account during training in cross-country skiing

    Assessment of Basic Motions and Technique Identification in Classical Cross-Country Skiing

    Get PDF
    Cross-country skiing is a popular Olympic winter sport, which is also used extensively as a recreational activity. While cross-country skiing primarily is regarded as a demanding endurance activity it is also technically challenging, as it contains two main styles (classical and skating) and many sub-techniques within these styles. To further understand the physiological demands and technical challenges of cross-country skiing it is imperative to identify sub-techniques and basic motion features during training and competitions. Therefore, this paper presents features for identification and assessment of the basic motion patterns used during classical-style cross-country skiing. The main motivation for this work is to contribute to the development of a more detailed platform for comparing and communicating results from technique analysis methods, to prevent unambiguous definitions and to allow more precise discussions and quality assessments of an athlete's technical ability. To achieve this, our paper proposes formal motion components and classical style technique definitions as well as sub-technique classifiers. This structure is general and can be used directly for other cyclic activities with clearly defined and distinguishable sub-techniques, such as the skating style in cross country skiing. The motion component features suggested in our approach are arm synchronization, leg kick, leg kick direction, leg kick rotation, foot/ski orientation and energy like measures of the arm, and leg motion. By direct measurement, estimation, and the combination of these components, the traditional sub-techniques of diagonal stride, double poling, double poling kick, herringbone, as well as turning techniques can be identified. By assuming that the proposed definitions of the classical XC skiing sub-techniques are accepted, the presented classifier is proven to map measures from the motion component definitions to a unique representation of the sub-techniques. This formalization and structure may be used on new motion components, measurement principles, and classifiers, and therefore provides a framework for comparing different methodologies. Pilot data from a group of high-level cross-country skiers employing inertial measurement sensors placed on the athlete's arms and skis are used to demonstrate the approach. The results show how detailed sub-technique information can be coupled with physical, track, and environmental data to analyze the effects of specific motion patterns, to develop useful debriefing tools for coaches and athletes in training and competition settings, and to explore new research hypotheses.publishedVersio

    Automatic Classification of Sub-Techniques in Classical Cross-Country Skiing Using a Machine Learning Algorithm on Micro-Sensor Data

    Get PDF
    The automatic classification of sub-techniques in classical cross-country skiing provides unique possibilities for analyzing the biomechanical aspects of outdoor skiing. This is currently possible due to the miniaturization and flexibility of wearable inertial measurement units (IMUs) that allow researchers to bring the laboratory to the field. In this study, we aimed to optimize the accuracy of the automatic classification of classical cross-country skiing sub-techniques by using two IMUs attached to the skier’s arm and chest together with a machine learning algorithm. The novelty of our approach is the reliable detection of individual cycles using a gyroscope on the skier’s arm, while a neural network machine learning algorithm robustly classifies each cycle to a sub-technique using sensor data from an accelerometer on the chest. In this study, 24 datasets from 10 different participants were separated into the categories training-, validation- and test-data. Overall, we achieved a classification accuracy of 93.9% on the test-data. Furthermore, we illustrate how an accurate classification of sub-techniques can be combined with data from standard sports equipment including position, altitude, speed and heart rate measuring systems. Combining this information has the potential to provide novel insight into physiological and biomechanical aspects valuable to coaches, athletes and researcherspublishedVersio

    Sex-based differences in sub-technique selection during an international classical cross-country skiing competition

    Get PDF
    The purpose of this study was to compare speed, sub-technique selection and temporal patterns between world-class male and female cross-country (XC) skiers and to examine the combined associations of sex and speed on sub-technique selection. Thirty-three XC skiers performed an international 10-km (women; n = 8) and 15-km (men; n = 25) time-trial competition in the classical style (with the first 10 km of the race being used for analyses). An integrated GNSS/IMU system was used to continuously track position speed and automatically classify sub-techniques and temporal patterns (i.e. cycle length and–rate). When comparing the eight highest ranked men and women, men spent less time than women (29±2 vs. 45±5% of total time) using diagonal stride (DIA), more time (44±4 vs. 31±4%) using double poling (DP) and more time (23±2 vs. 19±3%) using tucking and turning (all P < .01). Here, men and women used these sub-techniques at similar temporal patterns within the same speed-intervals; although men employed all sub-techniques at steeper uphill gradients (all P < .05). In subsequent analyses including all 33 skiers, adjustment for average racing speed did not fully attenuate the observed sex differences in the proportion of time using DIA (CI95% [-10.7, -1.6]) and DP (CI95% [0.8, 9.3]). Male world-class XC skiers utilized less DIA and more DP compared to women of equal performance levels. Although these differences coincided with men’s higher speed and their ability to use the various sub-techniques at steeper uphill gradients, sexual dimorphism in the proportional use of DIA and DP also occurred independently of these speed-differences.Sex-based differences in sub-technique selection during an international classical cross-country skiing competitionpublishedVersio

    The Interval-Based Physiological and Mechanical Demands of Cross-Country Ski Training

    No full text
    PURPOSE: To investigate fluctuations in speed, work rate and heart rate (HR) when cross-country (XC) ski skating across varying terrain at different endurance training intensities. METHODS: Seven male Norwegian junior skiers performed maximal speed (Vmax) tests in both flat and uphill terrain. Thereafter, 5-km sessions at low- (LIT), moderate- (MIT), and high-intensity (HIT) were performed based on their own perception of intensity, while monitored by a global navigation satellite system (GNSS) with integrated barometry and accompanying HR monitor. RESULTS: Speed, HR and rating of perceived exertion gradually increased from LIT to MIT and HIT, both for the total course and in flat and uphill terrains (all P<0.05). Uphill work rates (214[24]W, 298[27]W and 350[54]W for LIT, MIT and HIT) and the corresponding % of maximal HR (79.2 [6.1]%, 88.3[2.4]% and 91.0[1.7]%) were higher compared to flat terrain (159[16]W, 206[19]W and 233[72]W versus 72.3[6.3]%, 83.2[2.3]% and 87.4[2.0]% for LIT, MIT and HIT) (all P<.01). In general, ~13%-point lower utilization of maximal work rate (WRmax) was reached uphill compared to flat terrain at all intensities (all P<.01). CONCLUSIONS: XC ski training across varying terrain is clearly interval-based, both in terms of speed, external work rate and metabolic intensity for all endurance training intensities. Although work rate and HR were highest in uphill terrain at all intensities, the utilization of WRmax was higher in flat terrain. This demonstrates the large potential for generating external work rate when uphill skiing, and the corresponding down-regulation of effort due to the metabolic limitations. KEYWORDS: Endurance training; XC skiing; global navigation satellite system; high-intensity training; skating styl

    A multi-sensor system for automatic analysis of classical cross-country skiing techniques

    Get PDF
    Commercial systems utilizing data from inertial measurement units (IMUs) to analyse movement patterns have not yet been adapted to monitor daily training in cross-country (XC) skiing. The main purposes of this study are to investigate: (1) the feasibility and potential of a multi-sensor system consisting of a heart rate sensor, global navigation satellite systems (GNSSs) data and seven IMUs placed at multiple locations on the body for outdoor XC skiing, and (2) the validity of employing hard decision rules based on the correlation between arms and legs for detecting sub-techniques in classical XC skiing. All sensor data were synchronously sampled and synchronized with GNSS data from a commercially available sports watch while XC skiing on varying tracks, from amateur skiers and world-class athletes. An algorithm based on the correlation of the angular velocity of arms and legs was developed to detect the three main classic sub-techniques, diagonal, double poling with a kick and double poling. Other sub-techniques were classified as miscellaneous (0–20%). The system is shown to work well outdoors on snow during different conditions, and the implemented algorithm was validated by video analyses to detect the three sub-techniques with a sensitivity of 99–100%. This study is the first to detect and link sub-techniques in XC skiing to GNSS data, thereby associating the detection and distribution of sub-techniques to different terrains. Such information gives insight into the technical and tactical aspects of skiers’ daily training and competitions, thereby providing a tool for coaches and athletes.acceptedVersio

    Assessment of Basic Motions and Technique Identification in Classical Cross-Country Skiing

    Get PDF
    Cross-country skiing is a popular Olympic winter sport, which is also used extensively as a recreational activity. While cross-country skiing primarily is regarded as a demanding endurance activity it is also technically challenging, as it contains two main styles (classical and skating) and many sub-techniques within these styles. To further understand the physiological demands and technical challenges of cross-country skiing it is imperative to identify sub-techniques and basic motion features during training and competitions. Therefore, this paper presents features for identification and assessment of the basic motion patterns used during classical-style cross-country skiing. The main motivation for this work is to contribute to the development of a more detailed platform for comparing and communicating results from technique analysis methods, to prevent unambiguous definitions and to allow more precise discussions and quality assessments of an athlete's technical ability. To achieve this, our paper proposes formal motion components and classical style technique definitions as well as sub-technique classifiers. This structure is general and can be used directly for other cyclic activities with clearly defined and distinguishable sub-techniques, such as the skating style in cross country skiing. The motion component features suggested in our approach are arm synchronization, leg kick, leg kick direction, leg kick rotation, foot/ski orientation and energy like measures of the arm, and leg motion. By direct measurement, estimation, and the combination of these components, the traditional sub-techniques of diagonal stride, double poling, double poling kick, herringbone, as well as turning techniques can be identified. By assuming that the proposed definitions of the classical XC skiing sub-techniques are accepted, the presented classifier is proven to map measures from the motion component definitions to a unique representation of the sub-techniques. This formalization and structure may be used on new motion components, measurement principles, and classifiers, and therefore provides a framework for comparing different methodologies. Pilot data from a group of high-level cross-country skiers employing inertial measurement sensors placed on the athlete's arms and skis are used to demonstrate the approach. The results show how detailed sub-technique information can be coupled with physical, track, and environmental data to analyze the effects of specific motion patterns, to develop useful debriefing tools for coaches and athletes in training and competition settings, and to explore new research hypotheses

    The influence of race tactics for performance in the heats of an international sprint cross-country skiing competition

    Get PDF
    The purpose of this study was to examine the influence of race tactics for performance in the heats of an international sprint cross-country (XC) skiing competition in the classical style. Thirty elite male XC skiers (age: 24±3 years, sprint International Ski Federation [FIS] points: 61±27) performed a sprint time-trial (STT) followed by one to three ‘knock-out’ heats on a 1.7 km racecourse. An integrated GNSS/IMU system was used to determine position, sub-technique distribution and kinematics. Positioning was analysed using the television broadcast of the race. STT rank correlated positively with the final rank [(rs (28) = .72, P = .001)]. The top-two finishers in each heat were on average ~3.8% slower in the heats compared to the STT (237.1±3.9 vs. 228.3±4.0 seconds, P = .001). On average, the skiers performed ~10 overtakings per 100 meters from the start to the last uphill segment but only ~3 overtakings per 100 meters in the last two segments in each heat. 93.8% of the top-two finishing skiers positioned themselves at top 2 before approaching the final uphill, in which the top-two finishers and the skiers ranked 3–4 were generally faster than those ranked 5–6 in the heats (both, P = .01). Here, top-four skiers employed 5.3% longer cycle lengths and 3.4% higher cycle rates in the diagonal sub-technique than skiers ranked 5–6 (all, P = .01). The present study demonstrates the importance of race tactics for performance in the heats of sprint XC skiing, in which the main performance-determining factors in the present racecourse were a front position when approaching the final uphill segment combined with the ability to ski fast in that segment. In general, this illustrates how accurate racecourse analyses may help skiers to optimize their race-individual race-strategies in the heats of sprint XC skiing competitions
    corecore