276 research outputs found

    Local Magnetic Field Role in Star Formation

    Get PDF
    We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.Comment: 4 pages, 3 figures; to appear in the EAS Proceedings of the 6th Zermatt ISM Symposium "Conditions and Impact of Star Formation from Lab to Space", September 201

    Sensitivities of Low Energy Reactor Neutrino Experiments

    Full text link
    The low energy part of the reactor neutrino spectra has not been experimentally measured. Its uncertainties limit the sensitivities in certain reactor neutrino experiments. The origin of these uncertainties are discussed, and the effects on measurements of neutrino interactions with electrons and nuclei are studied. Comparisons are made with existing results. In particular, the discrepancies between previous measurements with Standard Model expectations can be explained by an under-estimation of the low energy reactor neutrino spectra. To optimize the experimental sensitivities, measurements for \nuebar-e cross-sections should focus on events with large (>>1.5 MeV) recoil energy while those for neutrino magnetic moment searches should be based on events <<100 keV. The merits and attainable accuracies for neutrino-electron scattering experiments using artificial neutrino sources are discussed.Comment: 25 pages, 9 figure

    Use of endobronchial one-way valves reveals questions on etiology of spontaneous pneumothorax: report of three cases

    Get PDF
    Spontaneous pneumothoraces are believed to arise when air from the supplying airway exit via a ruptured visceral pleural bleb into the pleural cavity. Endobronchial one-way valves (EBVs) allow air exit (but not entry) from individual segmental airways. Systematic deployment of EBVs was applied to three patients with secondary spontaneous pneumothoraces and persistent airleak. In all cases, balloon-catheter occlusion of the upper lobe bronchus stopped the airleak. EBVs applied to individual upper lobe segmental airways failed to terminate the airleak, which only stopped after placements of multiple EBVs to occlude all upper lobe segments. The observation questions the traditional belief of 'one-airway-one-bleb-one-leak' in spontaneous pneumothorax

    Theory of Bose-Einstein condensation in trapped gases

    Full text link
    The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical perspective. Mean-field theory provides a framework to understand the main features of the condensation and the role of interactions between particles. Various properties of these systems are discussed, including the density profiles and the energy of the ground state configurations, the collective oscillations and the dynamics of the expansion, the condensate fraction and the thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as well as the dynamic properties of the system; the predictions of mean-field theory are in excellent agreement with available experimental results. Effects of superfluidity including the existence of quantized vortices and the reduction of the moment of inertia are discussed, as well as the consequences of coherence such as the Josephson effect and interference phenomena. The review also assesses the accuracy and limitations of the mean-field approach.Comment: revtex, 69 pages, 38 eps figures, new version with more references, new figures, various changes and corrections, for publ. in Rev. Mod. Phys., available also at http://www-phys.science.unitn.it/bec/BEC.htm

    Quantum nonlinear optics with single photons enabled by strongly interacting atoms

    Get PDF
    The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons to strongly interacting atomic Rydberg states in a cold, dense atomic gas. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching, all-optical deterministic quantum logic and the realization of strongly correlated many-body states of light.National Science Foundation (U.S.)MIT-Harvard Center for Ultracold AtomsUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Quantum Memories

    Illness representation of COVID-19 affected public’s support and anticipated panic regarding the living with the virus policy: a cross-sectional study in a Chinese general population

    Get PDF
    BackgroundThere is a global trend for countries to adopt the Living with the Virus (LWV) policy regarding COVID-19. Little is known about the public’s supportiveness and emotional responses (e.g., anticipated panic) related to this policy. Such responses may be associated with illness representations of COVID-19 (i.e., how people think and feel about COVID-19). This novel topic was investigated in this study to facilitate policy-making and health communication.MethodsA random, population-based telephone survey interviewed 500 adults aged ≥18 of the Hong Kong general adult population from March to April 2022.ResultsThe prevalence of the public’s support and anticipated panic regarding the LWV policy, which were negatively correlated with each other, was 39.6 and 24.2%, respectively. The illness representation constructs of consequences, timeline, identity, illness concern, and emotional representations were negatively associated with supportiveness and positively associated with anticipated panic regarding the LWV policy. Illness coherence was significantly associated with policy support but not with anticipated panic. The associations between personal control/treatment control and supportiveness/anticipated panic were statistically non-significant. Moderation analyses showed that the above significant associations were invariant between those with and without previous COVID-19 infection.ConclusionPolicymakers need to be sensitized about the public’s supportive/unsupportive attitude and potential worry (panic) when adopting the LWV policy. Such attitudes/emotional responses may be affected by people’s illness representations of COVID-19. In general, those who found COVID-19 involving a milder nature and less negative emotions would be more supportive and anticipated less panic under the LWV policy

    Activity in Inferior Parietal and Medial Prefrontal Cortex Signals the Accumulation of Evidence in a Probability Learning Task

    Get PDF
    In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes

    Sequence variants of interleukin 6 (IL-6) are significantly associated with a decreased risk of late-onset Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin 6 (IL-6) has been related to beta-amyloid aggregation and the appearance of hyperphosphorylated tau in Alzheimer's disease (AD) brain. However, previous studies relating <it>IL-6 </it>genetic polymorphisms to AD included few and unrepresentative single nucleotide polymorphisms (SNPs) and the results were inconsistent.</p> <p>Methods</p> <p>This is a case-control study. A total of 266 patients with AD, aged≧65, were recruited from three hospitals in Taiwan (2007-2010). Controls (n = 444) were recruited from routine health checkups and volunteers of the hospital during the same period of time. Three common <it>IL-6 </it>haplotype-tagging SNPs were selected to assess the association between <it>IL-6 </it>polymorphisms and the risk of late-onset AD (LOAD).</p> <p>Results</p> <p>Variant carriers of <it>IL-6 </it>rs1800796 and rs1524107 were significantly associated with a reduced risk of LOAD [(GG + GC vs. CC): adjusted odds ratio (AOR) = 0.64 and (CC + CT vs. TT): AOR = 0.60, respectively]. Haplotype CAT was associated with a decreased risk of LOAD (0 and 1 copy vs. 2 copies: AOR = 0.65, 95% CI = 0.44-0.95). These associations remained significant in <it>ApoE e4 </it>non-carriers only. Hypertension significantly modified the association between rs2069837 polymorphisms and the risk of LOAD (<it>p</it><sub>interaction </sub>= 0.03).</p> <p>Conclusions</p> <p><it>IL-6 </it>polymorphisms are associated with reduced risk of LOAD, especially in <it>ApoE e4 </it>non-carriers. This study identified genetic markers for predicting LOAD in <it>ApoE e4 </it>non-carriers.</p

    The fatty acid binding protein 7 (FABP7) is involved in proliferation and invasion of melanoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The molecular mechanisms underlying melanoma tumor development and progression are still not completely understood. One of the new candidates that emerged from a recent gene expression profiling study is <it>fatty acid-binding protein 7 </it>(<it>FABP7)</it>, involved in lipid metabolism, gene regulation, cell growth and differentiation.</p> <p>Methods</p> <p>We studied the functional role of FABP7 in human melanoma cell lines and using immunohistochemistry analyzed its expression pattern and clinical role in 11 nevi, 149 primary melanomas and 68 metastases.</p> <p>Results</p> <p>FABP7 mRNA and protein level is down-regulated following treatment of melanoma cell lines with a PKC activator (PMA) or MEK1 inhibitor (PD98059). Down-regulation of FABP7 using siRNA decreased cell proliferation and invasion but did not affect apoptosis. In clinical specimens, FABP7 was expressed in 91% of nevi, 71% of primary melanomas and 70% of metastases, with a cytoplasmic and/or nuclear localization. FABP7 expression was associated with tumor thickness in superficial spreading melanoma (P = 0.021). In addition, we observed a trend for an association between FABP7 expression and Ki-67 score (P = 0.070) and shorter relapse-free survival (P = 0.069) in this group of patients.</p> <p>Conclusion</p> <p>Our data suggest that FABP7 can be regulated by PKC and the MAPK/ERK1/2 pathway through independent mechanisms in melanoma cell lines. Furthermore, FABP7 is involved in cell proliferation and invasion <it>in vitro</it>, and may be associated with tumor progression in melanoma.</p
    corecore