175 research outputs found

    MAF functions as a pioneer transcription factor that initiates and sustains myelomagenesis

    Get PDF
    Deregulated expression of lineage-affiliated transcription factors (TFs) is a major mechanism of oncogenesis. However, how the deregulation of nonlineage affiliated TF affects chromatin to initiate oncogenic transcriptional programs is not well-known. To address this, we studied the chromatin effects imposed by oncogenic MAF as the cancer-initiating driver in the plasma cell cancer multiple myeloma. We found that the ectopically expressed MAF endows myeloma plasma cells with migratory and proliferative transcriptional potential. This potential is regulated by the activation of enhancers and superenhancers, previously inactive in healthy B cells and plasma cells, and the cooperation of MAF with the plasma cell-defining TF IRF4. Forced ectopic MAF expression confirms the de novo ability of oncogenic MAF to convert transcriptionally inert chromatin to active chromatin with the features of superenhancers, leading to the activation of the MAF-specific oncogenic transcriptome and the acquisition of cancer-related cellular phenotypes such as CCR1-dependent cell migration. These findings establish oncogenic MAF as a pioneer transcription factor that can initiate as well as sustain oncogenic transcriptomes and cancer phenotypes. However, despite its pioneer function, myeloma cells remain MAF-dependent, thus validating oncogenic MAF as a therapeutic target that would be able to circumvent the challenges of subsequent genetic diversification driving disease relapse and drug resistance

    Chromatin-based, in cis and in trans regulatory rewiring underpins distinct oncogenic transcriptomes in multiple myeloma

    Get PDF
    Multiple myeloma is a genetically heterogeneous cancer of the bone marrow plasma cells (PC). Distinct myeloma transcriptome profiles are primarily driven by myeloma initiating events (MIE) and converge into a mutually exclusive overexpression of the CCND1 and CCND2 oncogenes. Here, with reference to their normal counterparts, we find that myeloma PC enhanced chromatin accessibility combined with paired transcriptome profiling can classify MIE-defined genetic subgroups. Across and within different MM genetic subgroups, we ascribe regulation of genes and pathways critical for myeloma biology to unique or shared, developmentally activated or de novo formed candidate enhancers. Such enhancers co-opt recruitment of existing transcription factors, which although not transcriptionally deregulated per se, organise aberrant gene regulatory networks that help identify myeloma cell dependencies with prognostic impact. Finally, we identify and validate the critical super-enhancer that regulates ectopic expression of CCND2 in a subset of patients with MM and in chronic lymphocytic leukemia

    MAF functions as a pioneer transcription factor that initiates and sustains myelomagenesis

    Get PDF
    Deregulated expression of lineage-affiliated transcription factors (TFs) is a major mechanism of oncogenesis. However, how the deregulation of nonlineage affiliated TF affects chromatin to initiate oncogenic transcriptional programs is not well-known. To address this, we studied the chromatin effects imposed by oncogenic MAF as the cancer-initiating driver in the plasma cell cancer multiple myeloma. We found that the ectopically expressed MAF endows myeloma plasma cells with migratory and proliferative transcriptional potential. This potential is regulated by the activation of enhancers and superenhancers, previously inactive in healthy B cells and plasma cells, and the cooperation of MAF with the plasma cell-defining TF IRF4. Forced ectopic MAF expression confirms the de novo ability of oncogenic MAF to convert transcriptionally inert chromatin to active chromatin with the features of superenhancers, leading to the activation of the MAF-specific oncogenic transcriptome and the acquisition of cancer-related cellular phenotypes such as CCR1-dependent cell migration. These findings establish oncogenic MAF as a pioneer transcription factor that can initiate as well as sustain oncogenic transcriptomes and cancer phenotypes. However, despite its pioneer function, myeloma cells remain MAF-dependent, thus validating oncogenic MAF as a therapeutic target that would be able to circumvent the challenges of subsequent genetic diversification driving disease relapse and drug resistance

    Chromatin-based, in cis and in trans regulatory rewiring underpins distinct oncogenic transcriptomes in multiple myeloma

    Get PDF
    Multiple myeloma is a genetically heterogeneous cancer of the bone marrow plasma cells (PC). Distinct myeloma transcriptome profiles are primarily driven by myeloma initiating events (MIE) and converge into a mutually exclusive overexpression of the CCND1 and CCND2 oncogenes. Here, with reference to their normal counterparts, we find that myeloma PC enhanced chromatin accessibility combined with paired transcriptome profiling can classify MIE-defined genetic subgroups. Across and within different MM genetic subgroups, we ascribe regulation of genes and pathways critical for myeloma biology to unique or shared, developmentally activated or de novo formed candidate enhancers. Such enhancers co-opt recruitment of existing transcription factors, which although not transcriptionally deregulated per se, organise aberrant gene regulatory networks that help identify myeloma cell dependencies with prognostic impact. Finally, we identify and validate the critical super-enhancer that regulates ectopic expression of CCND2 in a subset of patients with MM and in chronic lymphocytic leukemia

    Report of consensus panel 5 from the 11th international workshop on Waldenstrom's macroglobulinemia on COVID-19 prophylaxis and management

    Get PDF
    Consensus Panel 5 (CP5) of the 11th International Workshop on Waldenstrom's Macroglobulinemia (IWWM-11; held in October 2022) was tasked with reviewing the current data on the coronavirus disease-2019 (COVID-19) prophylaxis and management in patients with Waldenstrom's Macroglobulinemia (WM). The key recommendations from IWWM-11 CP5 included the following: Booster vaccines for SARS-CoV-2 should be recommended to all patients with WM. Variant-specific booster vaccines, such as the bivalent vaccine for the ancestral Wuhan strain and the Omicron BA.4.5 strain, are important as novel mutants emerge and become dominant in the community. A temporary interruption in Bruton's Tyrosine Kinase-inhibitor (BTKi) or chemoimmunotherapy before vaccination might be considered. Patients under treatment with rituximab or BTK-inhibitors have lower antibody responses against SARS-CoV-2; thus, they should continue to follow preventive measures, including mask wearing and avoiding crowded places. Patients with WM are candidates for preexposure prophylaxis, if available and relevant to the dominant SARS-CoV-2 strains in a specific area. Oral antivirals should be offered to all symptomatic WM patients with mild to moderate COVID-19 regardless of vaccination, disease status or treatment, as soon as possible after the positive test and within 5 days of COVID-19-related symptom onset. Coadministration of ibrutinib or venetoclax with ritonavir should be avoided. In these patients, remdesivir offers an effective alternative. Patients with asymptomatic or oligosymptomatic COVID-19 should not interrupt treatment with a BTK inhibitor. Infection prophylaxis is essential in patients with WM and include general preventive measures, prophylaxis with antivirals and vaccination against common pathogens including SARS-CoV-2, influenza, and S. pneumoniae.Peer reviewe

    Reduction of serum IGF-I levels in patients affected with Monoclonal Gammopathies of undetermined significance or Multiple Myeloma. Comparison with bFGF, VEGF and K-ras gene mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum levels of IGF-I in patients affected with multiple myeloma (MM) have been scarcely studied. The present study is aimed to explore this point comparing 55 healthy subjects, 71 monoclonal gammopaties of uncertain significance (MGUS) and 77 overt MM patients. In the same subjects, basic FGF and VEGF, have been detected. All three mediators were analyzed in function of K-<it>ras </it>mutation and melphalan response. Concerning IGF-I, two representative monitoring examples have also been added.</p> <p>Methods</p> <p>Cytokine determinations were performed by commercially available ELISA kits, while K12-<it>ras </it>mutation was investigated on genomic DNA isolated from bone marrow cell specimens by RFLP-PCR assay.</p> <p>Results</p> <p>Significant reductions of IGF-I levels were observed in MGUS and MM as compared with healthy controls. In addition, MM subjects showed significantly decreased serum IGF-I levels than MGUS. Conversely, increasing levels were observed for bFGF and VEGF, molecules significantly correlated. A multivariate analysis corrected for age and gender confirmed the significant difference only for IGF-I values (P = 0.01). K12-<it>ras </it>mutation was significantly associated with malignancy, response to therapy and with significantly increased serum bFGF levels.</p> <p>Conclusion</p> <p>IGF-I reduction in the transition: Controls→MGUS→MM and changes observed over time suggest that IGF-I should be furtherly studied in future clinical trials as a possible monitoring marker for MM.</p

    MicroRNA expression in tumor cells from Waldenstrom's macroglobulinemia reflects both their normal and malignant cell counterparts

    Get PDF
    MicroRNAs (miRNAs) are involved in the regulation of many cellular processes including hematopoiesis, with the aberrant expression of differentiation-stage specific miRNA associated with lymphomagenesis. miRNA profiling has been essential for understanding the underlying biology of many hematological malignancies; however the miRNA signature of the diverse tumor clone associated with Waldenstrom's macroglobulinemia (WM), consisting of B lymphocytes, plasmacytes and lymphoplasmacytic cells, has not been characterized. We have investigated the expression of over 13 000 known and candidate miRNAs in both CD19+ and CD138+ WM tumor cells, as well as in their malignant and non-malignant counterparts. Although neither CD19+ nor CD138+ WM cells were defined by a distinct miRNA profile, the combination of all WM cells revealed a unique miRNA transcriptome characterized by the dysregulation of many miRNAs previously identified as crucial for normal B-cell lineage differentiation. Specifically, miRNA-9*/152/182 were underexpressed in WM, whereas the expression of miRNA-21/125b/181a/193b/223/363 were notably increased (analysis of variance; P<0.0001). Future studies focusing on the effects of these dysregulated miRNAs will provide further insight into the mechanisms responsible for the pathogenesis of WM

    Fcγ receptors polymorphisms: clinical and functional implications in the use of therapeutic monoclonal antibodies

    No full text
    Polymorphisms in FcγRIIα (CD32) and FcγRIIIα (CD16) receptors are associated with responses to the CD20 directed IgG1 monoclonal antibody rituximab among patients with indolent lymphoma. Rituximab is an important therapeutic for Waldenström’s macroglobulinemia (WM). The contribution of FcγRIIIα-158 polymorphisms, as well as at other positions, in response to rituximab has not been reported for WM. In these studies, we sequenced all coding regions of the FcγRIIIα from a series of 58 patients with WM to first define potential polymorphisms, and then correlated these findings to their response to rituximab. We observed single nucleotide variations in five codons of the FcγRIIα. Two were commonly observed and predicted for amino acid polymorphisms at FcγRIIIα-48: leucine/leucine (L/L), leucine/arginine (L/R), and leucine/histidine (L/H). Polymorphisms at FcγRIIIα-158 were phenylalanine/phenylalanine (F/F), phenylalanine/valine (F/V), and valine/valine (V/V). A clear linkage between these polymorphisms was detected and all patients with FcγRIIIα-158 F/F were always FcγRIIIα-48 L/L (p V/F > F/F). Συμπεραίνουμε επομένως, ότι οι V/V και V/F έχουν μεγαλύτερη πιθανότητα κλινικής ανταπόκρισης στη θεραπεία με ριτουξιμάμπη, που οφείλεται: (α) στην αυξημένη έκφραση του CD16 στην επιφάνεια των NK κυττάρων τους, (β) στην καλύτερη σύνδεση της ριτουξιμάμπης και (γ) σε μεγαλύτερη ADCC
    corecore