10 research outputs found

    Recent advances in therapeutic delivery systems of bacteriophage and bacteriophage-encoded endolysins

    Get PDF
    Antibiotics have been the cornerstone of clinical management of bacterial infection since their discovery in the early 20th century. However, their widespread and often indiscriminate use has now led to reports of multidrug resistance becoming globally commonplace. Bacteriophage therapy has undergone a recent revival in battle against pathogenic bacteria, as the self-replicating and co-evolutionary features of these predatory virions offer several advantages over conventional therapeutic agents. In particular, the use of targeted bacteriophage therapy from specialized delivery platforms has shown particular promise owing to the control of delivery location, administration conditions and dosage of the therapeutic cargo. This review presents an overview of the recent formulations and applications of such delivery vehicles as an innovative and elegant tool for bacterial control. </jats:p

    Development of an Infection-Responsive Fluorescent Sensor for the Early Detection of Urinary Catheter Blockage

    Get PDF
    Formation of crystalline biofilms following infection by <i>Proteus mirabilis</i> can lead to encrustation and blockage of long-term indwelling catheters, with serious clinical consequences. We describe a simple sensor, placed within the catheter drainage bag, to alert of impending blockage via a urinary color change. The pH-responsive sensor is a dual-layered polymeric “lozenge”, able to release the self-quenching dye 5(6)-carboxyfluorescein in response to the alkaline urine generated by the expression of bacterial urease. Sensor performance was evaluated within a laboratory model of the catheterized urinary tract, infected with both urease positive and negative bacterial strains under conditions of established infection, achieving an average “early warning” of catheter blockage of 14.5 h. Signaling only occurred following infection with urease positive bacteria. Translation of these sensors into a clinical environment would allow appropriate intervention before the occurrence of catheter blockage, a problem for which there is currently no effective control method

    Emerging medical and engineering strategies for the prevention of long-term indwelling catheter blockage

    Get PDF
    Urinary catheters have been used on an intermittent or indwelling basis for centuries, in order to relieve urinary retention and incontinence. Nevertheless, the use of urinary catheters in the clinical setting is fraught with complication, the most common of which is the development of nosocomial urinary tract infections, known as catheter-associated urinary tract infections. Infections of this nature are not only significant owing to their high incidence rate and subsequent economic burden but also to the severe medical consecutions that result. A range of techniques have been employed in recent years, utilising various technologies in attempts to counteract the perilous medical cascade following catheter blockage. This review will focus on the current advancement (within the last 10 years) in prevention of encrustation and blockage of long-term indwelling catheters both from engineering and medical perspectives, with particular emphasis on the importance of stimuli-responsive systems.</p

    Recent advances in therapeutic delivery systems of bacteriophage and bacteriophage-encoded endolysins

    Get PDF
    Antibiotics have been the cornerstone of clinical management of bacterial infection since their discovery in the early 20th century. However, their widespread and often indiscriminate use has now led to reports of multidrug resistance becoming globally commonplace. Bacteriophage therapy has undergone a recent revival in battle against pathogenic bacteria, as the self-replicating and co-evolutionary features of these predatory virions offer several advantages over conventional therapeutic agents. In particular, the use of targeted bacteriophage therapy from specialized delivery platforms has shown particular promise owing to the control of delivery location, administration conditions and dosage of the therapeutic cargo. This review presents an overview of the recent formulations and applications of such delivery vehicles as an innovative and elegant tool for bacterial control.</p

    Emerging medical and engineering strategies for the prevention of long-term indwelling catheter blockage

    Get PDF
    Urinary catheters have been used on an intermittent or indwelling basis for centuries, in order to relieve urinary retention and incontinence. Nevertheless, the use of urinary catheters in the clinical setting is fraught with complication, the most common of which is the development of nosocomial urinary tract infections, known as catheter-associated urinary tract infections. Infections of this nature are not only significant owing to their high incidence rate and subsequent economic burden but also to the severe medical consecutions that result. A range of techniques have been employed in recent years, utilising various technologies in attempts to counteract the perilous medical cascade following catheter blockage. This review will focus on the current advancement (within the last 10 years) in prevention of encrustation and blockage of long-term indwelling catheters both from engineering and medical perspectives, with particular emphasis on the importance of stimuli-responsive systems.</p

    Delivery and quantification of hydrogen peroxide generated via cold atmospheric pressure plasma through biological material

    No full text
    The ability of plasma-generated hydrogen peroxide (H2O2) to traverse bacterial biofilms and the subsequent fate of the generated H2O2 has been investigated. An in vitro model, comprising a nanoporous membrane impregnated with artificial wound fluid and biofilms of varying maturity was treated with a helium-driven, cold atmospheric pressure plasma (CAP) jet. The concentration of H2O2 generated below the biofilms was quantified. The results showed that the plasma-generated H2O2 interacted significantly with the biofilm, thus exhibiting a reduction in concentration across the underlying nanoporous membrane. Biofilm maturity exhibited a significant effect on the penetration depth of H2O2, suggesting that well established, multilayer biofilms are likely to offer a shielding effect with respect to cells located in the lower layers of the biofilm, thus rendering them less susceptible to plasma disinfection. This may prove clinically significant in the plasma treatment of chronic, deep tissue infections such as diabetic and venous leg ulcers. Our results are discussed in the context of plasma-biofilm interactions, with respect to the fate of the longer lived reactive species generated by CAP, such as H2O2

    Reaction-based indicator displacement assay (RIA) for the development of a triggered release system capable of biofilm inhibition

    No full text
    Here, a reaction-based indicator displacement hydrogel assay (RIA) was developed for the detection of hydrogen peroxide (H2O2) via the oxidative release of the optical reporter Alizarin Red S (ARS). In the presence of H2O2, the RIA system displayed potent biofilm inhibition for Methicillin-resistant Staphylococcus aureus (MRSA), as shown through an in vitro assay quantifying antimicrobial efficacy. This work demonstrated the potential of H2O2-responsive hydrogels containing a covalently bound diol-based drug for controlled drug release
    corecore