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Abstract 

Antibiotics have been the cornerstone of clinical management of bacterial infection since 

their discovery in the early 20thcentury. However, their widespread and often indiscriminate 

use has now led to reports of multidrug resistance becoming globally commonplace. 

Bacteriophage therapy has undergone a recent revival in battle against pathogenic bacteria, 

as the self-replicating and co-evolutionary features of these predatory virions offer several 

advantages over conventional therapeutic agents. In particular, the use of targeted 

bacteriophage therapy from specialised delivery platforms has shown particular promise 

owing to the control of delivery location, administration conditions, and dosage of the 

therapeutic cargo. This review presents an overview of the recent formulations and 

applications of such delivery vehicles as an innovative and elegant tool for bacterial control.  
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Introduction 

Following the discovery of penicillin in 1928 by Alexander Fleming and the subsequent 

development of modern antibiotics, the World has enjoyed a period of relative safety from 

the threat of bacterial infection. However, Fleming himself was discerningly cautious about 

the potential of modern antibiotics to keep this threat at bay, going on to describe the 

possibility of developed resistance in his 1945 Nobel lecture detailing the dangers of 

“underdosage” [1]. This predicted evolution of multidrug resistant bacteria, and the 

subsequent decline in the production of novel antibiotics has driven a resurge of interest in 

the once forgotten viral therapies of the Eastern Bloc countries. Bacteriophage (phage) have 

been developed for therapeutic use since their discovery in the early 20th century, 

dominating antimicrobial treatment in the East where the antibiotic panacea failed to 

translate as effectively [2,3]. As ubiquitous predators of bacteria, phage exist in the biosphere 

alongside their host, continuously engaged in a biological game of cat and mouse, resulting in 

an estimated 50% reduction in the global bacterial population every 48 hours, arising from 

phage predation alone [4]. Phage propagate in bacteria through lytic development or 

lysogenic replication  (Figure 1) [5] . For use as therapeutic agents, lytic phage (incapable of 

lysogenic infection and more potent than temperate phage) are identified by phenotypic and 

structural characterisation as well as genetic sequencing, in order to avoid any possible 

genetic transfer events, such as transduction.  
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As host specific infectious agents, phage have been investigated as a form of bacterial 

biocontrol, with a range of applications in the medical, agricultural and biotechnology 

industries [6-9]. Owing to their high natural abundance, phage are relatively easily sourced 

and have been successfully isolated from all ecological environments in which bacteria are 

also present [10]. When used in combination as a phage cocktail, they are able to infect and 

destroy a multitude of bacterial species including both Gram-positive and Gram-negative 

Figure 1 – Standard viral replication cycles of bacteriophage. The closure of the newly formed 

circular DNA and corresponding cohesive site is denoted ‘cos’.  Reprinted by permission from 

Macmillan Publishers Ltd: Nature Reviews Genetics [5], copyright 2013. 
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strains.  These self-replicating virions are also active against antibiotic resistant isolates such 

as Pseudomonas aeruginosa (P. aeruginosa), a multidrug resistant pathogen associated with 

a range of infectious diseases [11]. There have been a number of phage based products 

approved by the FDA within the agricultural sector including; ListSheildTM for use on ready to 

eat meat, seafood and food contact surfaces, SalmoFresh for poultry, fish and fruit and 

vegetables, EcoShield for red meat and LISTEXTM for meat, fish and cheese [12]. However, 

there are currently no licenced bacteriophage or bacteriophage derived products approved 

for human therapeutic use in the EU or the USA.  

 

The need for regulated clinical trials and compliance with current manufacturing guidelines is 

a major complication in the implementation of sustainable phage therapy. The reliability of 

early studies from previously inaccessible countries (such as those within the former Soviet 

Union), have since been called into question based on factors such as lack of blinding and co-

administration with antibiotics during early experimental therapy  [13]. However in response 

to the ever-pressing requirement to develop new and more effective antimicrobials, the 

development of phage based products has recently seen some promising pre-clinical results, 

with a number of clinical trials underway. PhagoBurn (Trial Number NCT02116010 [14]), 

funded by the European Union is currently undergoing phase I/II trials utilising a phage 

cocktail to treat burn wound infections with results expected in March/April 2017. AmpliPhi 

Biosciences have a phage product AB-SA01 (Trial Number NCT02757755 [15]), active against 

Staphylococcus aureus (S.aureus) entering into phase II trials for the treatment of both 

chronic rhinosinusitis and bacterial skin infection. Previous clinical trials adhering to modern 

protocols have also seen success in the treatment of a range of infections, including venous 

leg ulcers, otitis and reduction of bacterial load in the nasal carriage [16-18].In addition to 
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regulatory and clinical requirements, the pharmacokinetics (PK) and pharmacodynamics (PD) 

of phage therapy must be considered. The administration of an antimicrobial at the site of 

infection must be both timely and in sufficient concentration to elicit a response, thus 

avoiding effects such as sub-lethal dose administration (with associated resistance 

development), immune response/ clearance, and diffusion limitations [19]. The physiological 

stability of such biological entities must be maintained during treatment, including the 

prevention of neutralization (by antibodies or other such compounds), and protein 

degradation via localised environmental conditions [20]. The trials described above all focus 

on topical application of phage. One of the outstanding questions regarding their suitability 

for treatment of a wider range of infections is their suitability for systemic delivery. To be 

able to apply the phage distant to the site of infection necessitates a greater understanding 

of the clearance of phage from the body and strategies to maintain an effective 

concentration long enough for phage attachment to the pathogen and subsequent infection 

and amplification. Both the innate and adaptive immune system have a role in reducing the 

level of circulating phage. This has been discussed in detail recently [6] and is outside of the 

scope of the current review. This is likely to be a key determinant of therapeutic efficacy, but 

a number of the encapsulation and delivery methods described below also help to reduce 

immune clearance as well as enhancing other aspects of PK/PD. Therefore, the development 

of suitable delivery vehicles has received considerable attention recently in order to improve 

and maintain the pharmacological properties of therapeutic phage products in vivo.  

 

A range of techniques have been employed in recent years utilizing various technologies 

(encapsulation, immobilization, conjugation etc.) to successfully exploit bacteriophage for a 

number of applications including; sensing and detection of infection, bacterial capture and 
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phage-assisted delivery of therapeutic cargo [21-26]. The bacterial acquisition of specific 

genes via phage guided delivery, using CRISPR-Cas technology, for sensitization of previously 

drug resistant bacterial isolates [27,28], and the delivery of genes expressing novel 

antibacterial agents (SASPject; [29]) has demonstrated the versatility and extent to which 

phage have the potential to be utilized in modern medicine. This review will focus on the 

current advancements in delivery systems capable of housing phage for the specific 

therapeutic purpose of treating bacterial infection, with particular emphasis placed on the 

stabilisation and protective strategies required.  

 

 

Encapsulation 

The successful administration of a therapeutic agent to a target site often depends on a 

suitable delivery vehicle to ensure it reaches the infection site. An example of this is 

pulmonary delivery; an area in which phage have received considerable attention in recent 

years, owing to the increase in multidrug resistance amongst bacterial isolates, including 

those associated with pneumonia and tuberculosis. Klebsiella pneumoniae (K. pneumoniae) is 

a major cause of nosocomial pneumonia, especially amongst immunocompromised patients 

with reported mortality rates as high as 60% [30]. Whilst previously considered an 

extracellular pathogen, this Gram-negative bacterium has shown the ability to become 

internalised in vivo by certain cell types including lung epithelial cells [31]. Therefore, 

effective treatment requires intracellular access, a concept referred to as the ‘Trojan horse’ 

approach, relying on a suitable vector to transport phage across the eukaryotic cell 

membrane, delivering the antimicrobial cargo directly into the infected cell. The ability of 

bacteria to colonise intracellularly, serving as a reservoir of infection and the inability of 
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phage to enter myeloid cells, has previously rendered phage therapy ineffective for certain 

conditions. However the use of lipid-based carriers as a means of transportation across the 

cell membrane may offer the possibility of phage as a viable treatment option. Liposomal 

entrapment of the fully characterised lytic phage KPO1K2 appears to provide enhanced 

intracellular uptake into phagocytic cells in order to target engulfed K. pneumoniae present 

within macrophages. In the case of encapsulated phage, ~95% of the intracellular bacteria 

was eradicated within 24 hours compared to no significant difference in intracellular bacterial 

content using free phage (Figure 2) [32].  

 

 

 

 

 

 

 

 

 

 

 

 

Liposomal entrapment has also been utilized for the potential intracellular treatment of 

tuberculosis via successful encapsulation of the mycobacteriophage TM4 or the reporter 

bacteriophage λeyfp into giant unilamellar vesicles (GUVs), by a variety of preparation 

techniques. Enhanced uptake into eukaryotic cells (THP-1 macrophages) was seen with 

A B C 

Figure 2 – Confocal micrograph showing intracellular bacterial content using Live/Dead 

fluorescent staining A) Untreated macrophages, showing intracellular bacteria in yellow B) 

Infected macrophages treated with free phage, but with intracellular bacteria still evident C) 

Liposome treated macrophages with apparent intra cellular eradication of bacteria. Figure adapted 

from [32]. 
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encapsulated phage compared to free phage, and no sign of mechanical damage to  the 

liposome was observed as a result of phage encapsulation [33].  

 

Encapsulation of phage for the purpose of treating pulmonary-associated infection has 

shown additional benefits in terms of neutralisation protection. Cationic liposomal 

entrapment appears to offer a protective barrier from which phage are able to evade anti-

phage antibodies. Antibodies produced by the mammalian immune system in response to 

phage therapy have shown the potential to  render phage inactive, a problem which appears 

to be dependent both on the type of phage used and the delivery route chosen [34]. 

Liposome encapsulated phage (active against K. pneumoniae) incubated alongside 

bacteriophage antibodies from mouse serum, experienced complete protection from any 

degradative effects, whereas unencapsulated phage appeared to undergo complete 

neutralisation, with no active phage particles remaining after 3 hours incubation in-vitro.[32].  

 

Moreover, previous studies have shown that the efficacy of phage therapy in animal models 

is effective only after almost immediate administration post infection, whereas liposome 

entrapped phage appear to retain antibacterial activity against pulmonary associated 

infection even when treatment is delayed for up to 3 days post infection [35]. Furthermore, 

liposomal encapsulation of phage has demonstrated a greater degree of bio-distribution and 

bio-retention compared to free phage. This has been shown in in vivo experiments via the 

inoculation of mice with both free phage and phage encapsulated within phospholipid 

vesicles. Encapsulated phage were present at higher peak levels and concentrations were 

maintained longer, declining after 12 hours for encapsulated phage compared to 6 hours for 

free phage. Phage remained detectable for up to 4 days in blood, 6 days in the liver, lungs 
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and kidney, and up to 14 days in the spleen following a single intraperitoneal injection, 

compared to undetectable levels after 48 hours in all 4 organs when using free phage 

(aqueous suspension) [36]. The maintenance of maximal concentration and length of 

persistence of phage in the circulation observed in this study, suggests that systemic 

treatment may be possible using such approaches.  

 

Nanoemulsions consisting of phage within the aqueous core of a lipid suspension (water-in-

oil-in-water), have gained attention, owing to the enhanced functional and structural stability 

of the entropically confined phage encased within such micelles. A positive correlation has 

been seen between the fatty acid chain length of the lipid micelle and the emulsion stability, 

manifested as an overall long term stability of up to 3 months at room temperature [37]. 

Alongside an increase in shelf life, the use of nanoemulsions has previously shown higher 

infectivity rates of bacteriophage when compared to aqueous phage suspensions, possibly as 

a result of the elimination of electrostatic repulsions between the negatively charged phage 

and bacteria [38,39].  

 

Encapsulation of phage and the resulting protective effect has been exploited in the targeted 

delivery of bacteriophage K (active against S. aureus) to the intestine via oral delivery. 

Ensuring the successful delivery of phage (or any biological therapeutic) through the 

gastrointestinal (GI) tract relies on a protective strategy to prevent  inactivation by stomach 

acid, an issue previously encountered with other encapsulation formulations, with 

detrimental effects observed as a function of microsphere size (<100 µm) and possible acid 

diffusion into the microspheres [40]. The utilisation of a microsphere delivery system 

consisting of alginate microspheres co-encapsulating calcium carbonate and phage K has 
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shown to provide a more robust protective effect against simulated GI fluid than alginate 

microspheres alone. Moreover, the addition of protective additives such as maltodextrin (up 

to 20% w/v) to the microcapsules has shown to increase the viability of phage K after drying, 

thus allowing for dry form encapsulated phage preparation [41]. This was further investigated 

using alginate-whey protein microspheres with maltose as a protective agent against 

dehydration effects. The encapsulated phage K exhibited enhanced stability after drying, 

likely as a result of the high glass transition temperature of the disaccharide: preventing 

denaturation by alteration of the protein dynamics through physical confinement. In addition 

to any benefits offered by dry formulations in this instance (ease of storage, transport and 

administration), dry powders containing phage exhibited storage stability at both 4°C and 

23°C with over 80% of the encapsulated phage retaining viability at the higher temperature 

after two weeks [42]. Similarly, Escherichia coli (E. coli) O157:H7 bacteriophage have been 

successfully encapsulated in chitosan-alginate microspheres, demonstrating stability and 

sustained release under simulated gastric conditions at pH 2 and 2.5. This  has potential 

applications in the treatment of gastroenteritis infections such as haemorrhagic colitis [43].  

 

 

Immobilisation 

The surface anchoring of biological entities with retention of their original function can be 

problematic owing to conformational changes in tertiary protein structure (denaturation) and 

changes in water content caused by the binding of proteins and protein ensembles to what 

are often rigid supports. However, the therapeutic use of phage may require immobilisation 

on abiotic surfaces (such as medical devices including stents, tracheal tubes, catheters etc.) 

since such devices are particularly prone to bacterial biofilm formation: the ability of bacteria 
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to colonise surfaces, forming dense and often impenetrable biofilms. A recent method 

targeted at successful phage immobilisation, has utilized plasma-associated activation of 

polytetrafluoroethylene (PTFE) and ultra-high molecular weight polyethylene (PE). Low 

temperature plasma treatment of such polymers created reactive acid groups which were 

used as anchor points for phage attachment. Such immobilised phage retained activity 

against both E.coli and S .aureus despite confinement at the surface. Figure 3 shows the steps 

involved in amide formation and subsequent phage attachment. Furthermore, the surface-

bound phage retained bactericidal activity for several months under specific conditions (high 

humidity/ aqueous environment) [44]. This technology demonstrates the potential of phage-

coated surfaces as potent antimicrobial interfaces capable of targeting important human 

pathogens, with the potential to prevent biofilm formation.  
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There are additional examples in the literature of successful phage binding to surfaces for 

purposes other than therapeutic treatment such as biosensors, bacterial capture platforms 

and antimicrobial coatings for food packaging [45-47]. Optimizing the parameters for 

Figure 3 –Steps involved in phage anchoring for the prevention of bacterial adhesion and 

biofilm formation. A) Plasma mediated formation of surface acid groups B) Phage attachment 

via amide bond formation C) Phage capture of bacterial cells D) Bacterial lysis post phage 

infection. Reprinted with permission from [44]. Copyright 2013 American Chemical Society. 
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successful phage immobilisation in terms of surface density, orientation, infectivity and 

stability is paramount in the development of any phage-based surface platform. Once 

established, this technology has the potential to be utilized for a range of applications, 

including antibacterial coatings and surfaces for therapeutic use.  

 

 

Polymeric Formulations 

Inactivation of phage as a result of environmental factors such as temperature, pH and UV is 

a major hurdle in the development of phage therapy, affecting both delivery route and 

stability. Phage-polymer ensembles have been shown to offer beneficial effects in terms of 

protein stability with respect to external conditions, offering the possibility of efficient 

storage and therapeutic use of phage for the treatment of infection. An example of this is the 

use of the naturally occurring polymer, poly-γ-glutamic acid (γ-PGA). Whilst the mechanism 

behind the protective effect is not yet fully understood, even in very low concentration ~1%, 

this biodegradable polymer has shown to effectively protect two different E.coli phage, MS2 

and T2 (from the Leviviridae and Myoviridae families respectively), against temperatures of 

up to 60°C, possibly as a result of physical protection of the viral particles. Protection against 

UV exposure was also seen with γ-PGA formulated phage, again possibly as a result of 

physical protection or refraction of the radiation. In the case of the T2 phage, a significant 

increase in survival rate was seen at a range of pH values via polymer stabilisation [48]. This is 

likely due to the pH sensitive nature of the polymer itself, which undergoes a conformational 

change at low pH where it exists in an alpha-helical conformation, potentially encasing the 

phage and protecting it from the acidic environment. γ-PGA exists in a linear random-coil 

conformation at neutral pH, hence the protective effects at higher pH are still poorly 
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understood. However, further research may provide enhanced techniques for the protection 

of phage, with implications for both delivery and storage conditions.  

 

Naturally occurring polymers such as proteins have shown potential to stabilise vaccine 

formulations, a concept which would have significant implications for the transportation and 

successful administration of human vaccines, especially in the developing world. Long term 

stability in elevated temperatures would drastically improve the often unreliable and 

expensive ‘cold chain’ transportation network required to distribute global immunisation 

treatment [49]. Building on this concept, recent efforts have taken the same approach using 

silk proteins to stabilise phage against high temperatures, showing greater efficacy in 

protective effects when compared to a non-silk protein (bovine serum albumin). Results 

obtained showed 100% loss of viable phage in the absence of protein after one day 

incubation at 37°C, whereas the addition of various silk proteins (honeybee, hornet and 

silkworm), resulted in a maximum loss of 6% viable phage (Figure 4A). Indeed, the use of 

honeybee silk significantly enhanced phage survival even at 50°C for up to 8 weeks (Figure 

4B) [50]. A suggested reason for this is the increase in favourable protein-protein 

interactions, in preference of water-protein interactions within the hydration shell 

surrounding the phage.  
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Figure 4 – Loss of viral infectivity as a function of protein addition. A) After incubation at 

37°C with and without different proteins B) After incubation at various temperatures alongside 

honeybee silk. Inset highlights the correlation between viral viability and incubation 

temperature. Adapted with permission from [50]. Copyright 2014 American Chemical Society. 

A 

B 
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Aerosol Formulations 

Nebulization of drug formulations is a common methodology for the delivery of 

pharmaceutics and biopharmaceutics for inhalation directly to the lung. Patients suffering 

from cystic fibrosis (CF) are of particular concern, owing to their high susceptibility to 

infection. The administration of aerosolized phage via nebulization has previously been 

employed in a mouse model to evaluate the efficacy of phage therapy against a group of 

opportunistic pathogens: Burkholderia cepacia complex (BCC) organisms, capable of infecting 

immunocompromised patients. The results obtained showed a significant reduction in 

bacterial load within the lungs of immunocompromised and BCC infected mice (in some cases 

comparable to conventional antibiotics), using a range of different phage with varying 

multiplicities of infection (MOI) [51]. Further investigations into the use of nebulization as a 

delivery system for phage treatment has focused on P. aeruginosa, another common 

pathogen associated with CF, capable of causing respiratory failure in up to 95% of patients 

[52]. In this case, it was determined that the amount of phage delivered to the infection site 

which, for an infection such as this, concerns the lower respiratory tract, the choice of 

nebulizer also plays a significant part. It was concluded that a jet nebulizer is most effective, 

as 12% of the phage contained within particles and placed within the nebulizer, were small 

enough (< 4.7 µm) to be inhaled into the lower lung whilst retaining viability [53].  

 

Another important consideration in the development of any therapeutic system is the 

potential for scale-up operations. In order to establish a viable delivery system, one must 

take into consideration a number of different factors including cost, feasibility of application, 

convenience and downstream processing steps. Whilst nebulization has shown promising 

results in terms of successful delivery, there are some concerns surrounding the expense and 
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the complexity in the procedures associated with their use outside of the clinic (i.e. in a 

patient’s home). As a potential alternative, recent efforts have focused on dry powder 

inhalers (DPIs), as a means of delivering phage in order to combat respiratory infection. 

Compared to nebulizers, DPIs are small, cheap, easy to operate and have been shown to 

successfully deliver a wide range of pharmaceuticals [54]. Aerosolized powders containing 

bacteriophages KS4-M and ɸKZ, targeting both BCC and P. aeruginosa respectively, 

demonstrated successful stabilisation of the lyophilized phage alongside retention of viability 

utilising a 60: 40 w/w matrix of lactose/lactoferrin [55].  

 

In addition to freeze dried formulations for use in DPIs, spray drying has been investigated for 

pulmonary delivery of phage as it is a less energy intensive process and requires fewer 

downstream processing steps. Using atomization as a potentially scalable process, two 

morphologically different phage, Pseudomonas phage LUZ19 and Staphylococcus phage 

Romulus, were successfully formulated into respirable powders in the presence of various 

excipients in order to protect the phage. Of those investigated, trehalose was found to be 

most effective in terms of protective effects, demonstrating increased stability at low 

temperature (4°C). However, further investigation into thermal stability showed a 

pronounced effect on phage viability at higher temperature (25°C) and high humidity. This is 

likely as a result of crystallization of the trehalose-phage amorphous matrix, thus highlighting 

the importance of suitable storage conditions of powder formulations containing phage 

particles [56].  In addition, the formation of phage-containing particles with the correct size 

parameters suitable for pulmonary delivery (between 1 and 5 µm) was found to be 

dependent on the type of phage, as previously postulated. Romulus-containing powders 

exhibited a higher percentage of suitably sized particles, when compared to podovirus 
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LUZ19-containing particles. In contrast, the reduction in phage titre post spray drying (even in 

the presence of stabilising agents) was higher for Romulus phage (>2.5 log reduction), 

compared to LUZ19 (<1 log reduction), possibility as a consequence of shear stress on the 

long tail structure of the myovirus Romulus [57]. Therefore, the utilisation of dry powder 

phage therapy for treatment of pulmonary infection must rely on a compromise between 

particle size and phage survival, a fine balance which is evidently phage specific and very 

much dependent on production and storage conditions.   

 

 

Stimuli Responsive Systems 

Alongside the stability and release-location of bacteriophage, the release-kinetics from the 

delivery matrix must also be considered. Stimuli-responsive systems should remain kinetically 

silent, unless a ‘burst release’ of the therapeutic agent is initiated in response to an external 

stimulus (e.g. temperature, pH, light, ultrasound or biomarker signals). Thereupon, adequate 

dosage of the antimicrobial is rapidly delivered to the correct physiological location in 

response to a successful bacterial infection. By avoiding systematic dosage of the often 

delicate biological cargo, triggered phage release systems can in principle avoid reduction in 

viable phage count commonly associated with exposure to biological fluids/ temperature 

fluctuations [58] . Moreover, triggered release systems can help ensure bacterial pathogens 

are not exposed to sub lethal doses of phage, making the phage more effective and slowing 

evolution of bacterial resistance.  

 

Triggered-release phage systems are being developed with the potential for treatment of 

wound infection. Such systems are designed as modifications of existing wound dressing 
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materials such as non-woven polymers, in order to incorporate stimuli-responsive phage 

delivery systems. One such system employs the thermally responsive polymer poly(N-

isopropylacrylaminde) (PNIPAM), which undergoes a reversible, temperature-dependent 

phase transition at the lower critical solution temperature (LCST), manifesting as an 

unambiguous change in polymer volume. Control of the LCST was established via formulation 

with allylamine (ALA), allowing the system to undergo a transitional collapse at 34 °C. 

Impregnation of PNIPAM-co-ALA nanospheres with S. aureus phage K, and subsequent 

grafting to a non-woven polypropylene ‘dressing’ was achieved via amine coupling to plasma 

deposited maleic anhydride. Utilising the proximity of the polymer’s morphological change to 

healthy skin temperature (32 °C), thermally-triggered release of phage K from the 

nanospheres was engineered to occur in response to infected skin, which often displays an 

increase in skin temperature as large as 3.6 °C. Incubation of phage-loaded nanospheres with 

S. aureus ST228 showed release of the phage cargo and subsequent cell lysis at 37 °C, whilst 

the bacterial lawn remained confluent at temperatures associated with healthy skin [59].  

 

In addition to secondary physical stimuli, primary biomarker signals have been utilised to 

trigger the release of phage K for the treatment of infected skin wounds. Hyaluronidase 

(HAase) is an important virulence factor known to be secreted by pathogens associated with 

skin infection, including S.aureus. Degradation of hyaluronic acid (HA) in the skin by HAase is 

thought to aid bacterial invasion of tissue via cleavage of the β-1,4 position in HA, hence 

allowing the enzyme to act as a spreading factor within the process of bacterial pathogenesis 

[60]. A HA/HAase system has been developed comprising of a dual-layered hydrogel matrix 

which allowed HAase to trigger release of phage K for treatment of pathogenic skin infection 

[61]. Photo-cross-linked HA methacrylate (HAMA) hydrogels were used to cap and seal a 
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lower reservoir layer of phage K containing agarose hydrogel. Clear visual signs of enzymatic 

degradation and subsequent phage release (ca. 105 pfu/ml) were observed when incubated 

with the supernatant of a wide range of S.aureus isolates. Both aforementioned examples of 

the incorporation a bacteriophage delivery system to a dressing platform exemplify the 

potential for future phage therapy, where phage virions are incorporated into a compatible 

carrier matrix.  

 

Examples of photo-responsive systems utilizing bacteriophage, either within a 3 dimensional  

supramolecular hydrogel for cell culture and release [62], or in the derivation of a virus-like 

particle (VLP) for the photocaged delivery system of the anticancer drug doxorubicin [63], 

demonstrate the wide-reaching applications of stimuli-responsive phage technologies. In 

particular, release systems based on VLPs have made a promising start within biomedical 

research for both diagnostic and therapeutic roles [64]. As the recombinantly expressed and 

non-infectious structural analogues of virus particles, VLPs still possess native viral 

recognition elements. When appropriately functionalised, the clinical tunability of such 

particles allows them to act as candidates for a multitude of medical purposes, including drug 

delivery applications and tumour imaging.   

 

 

Bacteriophage Endolysins 

In addition to using whole phage as a potential alternative to conventional antibiotics, there 

has been recent interest in using phage derived products, specifically endolysins as 

therapeutics. Encoded by the phage genome, these small molecules are transcribed and 

synthesised within the bacterial host’s cytoplasm following phage infection. They are then 
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translocated through the cytoplasmic membrane  during the late stage of the infection cycle 

and are responsible for breaking down the bacterial cell wall, thus facilitating the release of 

the newly formed phage virions from the infected cell [65-67]. The primary benefit of using 

endolysins as opposed to whole phage lies with the elimination of genetic material from the 

therapeutic, thus eliminating the possibility of any genetic transfer events previously 

demonstrated with certain temperate phage [68]. Whilst bacteriophage undergoing 

consideration for medicinal use are incapable of such transduction, removal of phage genes 

entirely may help to subdue any concerns surrounding the opening of ‘Pandora’s Box’ in 

terms of encouraging any phage assisted genetic mobilization. This may also help to speed 

regulatory acceptance of these new therapeutics. Furthermore, there are currently no 

identified resistance mechanisms towards phage lysins, indicative of the highly conserved, 

essential bacterial cell wall target sites of the phage encoded enzymes [69]. Unlike many 

antibiotics, lysins are specific in their target bacterial strain and have shown the ability to 

eliminate staphylococcal biofilms including persister cells (dormant, drug tolerant variants) 

[70-72]. The primary disadvantage of using lysins compared with whole phage is that they are 

not amplified in the host cell, thus larger doses are required for antimicrobial effect.   

 

A number of different endolysins have been isolated, characterised, and produced 

recombinantly, demonstrating lytic activity against a range of bacterial species (including 

Acinetobacter baumanni, Bacillus anthracis and Streptococcus pyogenes [73-76]). Owing to 

the specific advantages over whole phage therapy, there is currently an endolysin based 

medical device registered for human use. Staphefekt™, marketed by Micreos consists of an 

endolysin active against S.aureus which can be used on intact skin for the treatment of 

conditions such as eczema, acne, rosacea and skin irritation. Whilst it is not licenced for use 
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in open wounds or within the medical setting at present, future clinical trials are expected to 

explore the possibility of developing Staphefekt™ into a clinical treatment [77].  Similarly 

ContraFect Corporation have developed an endolysin, CF-301, in collaboration with The 

Rockefeller University for the treatment of S.aureus associated bloodstream infections. As 

the first lysin to enter clinical trials in the US, the recently completed phase I trial results in 

healthy volunteers have shown promising results with no adverse clinical safety signals 

observed. CF-301 has shown potency in combination with approved anti-staphylococcal 

agents and in the eradication of methicillin resistant S.aureus biofilms [78]. Additionally CF-

301 has been granted Fast Track Designation from the FDA in order to expedite its clinical 

assessment, a clear indication of how lysins have the potential to fill unmet medical needs.  

 

Additional protein engineering approaches have also enabled lysins to be developed for 

Gram-negative pathogens which are usually considered to be recalcitrant to endolysin 

treatment [79]. Artilysin®s, consisting of an endolysin and an amphipathic or polycationic 

lipopolysaccharide-destabilizing peptide, are able to successfully penetrate the outer 

membrane of Gram-negative bacterial cells. Through disruption of ionic and hydrophobic 

forces within the protective outer membrane, these engineered fusion proteins are then able 

degrade the peptidoglycan cell wall [80]. Artilysin®s have shown bactericidal efficacy both in 

vitro and in vivo against P. aeruginosa and Acinetobacter baumanni [81,82]. Similarly, 

‘artilysation’ of endolysins effective against Gram-positive bacteria has shown to improve 

enzymatic and antibacterial activity compared to the wild type enzyme, through addition of a 

peptide selected to improve cell wall affinity [83].  
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However, as a relatively recent development, there are limited examples of successful 

delivery systems capable of carrying such antimicrobial cargo. One such study has 

successfully stabilized a staphylococcal endolysin, LysK (active against both methicillin and 

vancomycin resistant S. aureus), through complexation with polycationic polymers. 

Complexation resulted in increased activity, retention of specificity, and increased stability at 

physiological temperature. An increase in stability was also seen at 22°C, with poly-L-lysine 

and 10mM NaCl, manifesting as an increase in the half-inactivation time from 2 days for the 

free enzyme, to 2 months for complexed LysK [84]. It is believed that the change in kinetic 

properties of LysK upon complexation is likely a result of charge redistribution in the bacterial 

cell wall, following interaction between the cationic polyelectrolytes and the negatively 

charged surface proteins enclosed within the wall itself.  

 

As previously stated, stimuli responsive materials are of particular interest as they allow for 

the controlled release of therapeutic cargo. The truncated form of LysK, denoted CHAPK, 

consists of the single catalytic domain and has shown to exhibit lytic activity both in vitro and 

in vivo and against staphylococcal biofilms [72,85,86]. Exploiting synergistic effects with the 

bacteriocin lysostaphin, temperature responsive polymeric nanoparticles (PNIPAM) have 

demonstrated controlled release of the enzyme cocktail at an elevated temperature 

associated with infection in vitro. Formulated into a prototype wound dressing, nanoparticles 

containing the enzybiotics were anchored onto non-woven polypropylene via plasma 

activation of the surface and demonstrated statistically significant cell lysis at the elevated 

temperature (>4 log reduction in cell count), compared to the lower temperature associated 

with uninfected skin (<1 log reduction) [87].  
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Additional studies have investigated possible transportation methods for the delivery of 

endolysins to specific infections sites. The GI tract is capable of harbouring a range of 

pathogenic bacteria, many of which are difficult to treat (especially with a biopharmaceutical 

agent), owing to the harsh conditions found throughout the alimentary canal. Delivery of the 

endolysin CP25L, active against Clostridium perfringens (C. perfringens), to the GI tract has 

the potential to treat a range of diseases, including necrotic enteritis, gas gangrene and many 

common forms of food poisoning. Employing a dominant resident of the human intestinal 

flora, Lactobacillus johnsonii researchers have engineered this probiotic microbe to express 

CP25L, demonstrating successful production and secretion in vitro with retention of 

enzymatic lytic activity against C. perfringens. This engineered system provides a dual 

approach to targeting bacterial colonisation of the GI tract (initially via use of a probiotic 

microbe with the potential to be used as a competitive exclusion agent for the control of C. 

perfringens in its own right), and secondly through the secretion of an active endolysin with 

the potential for directed delivery to the gut [88,89].  

 

 

Conclusion and Future Perspective  

Current research into bacteriophage as an alternative or complementary treatment option 

for infectious diseases has shown encouraging results with a number of phage cocktails and 

products entering clinical trials. The development of phage therapy in Eastern Europe, in 

particular at the Eliavia Institute in Tbilisi, Georgia, has laid the foundation for the potential 

implementation of global phage treatment in the 21st century. Recent research into phage 

delivery systems has shown advantages over the administration of unprotected phage 

including enhanced bioretention, stability and protection from harsh environmental 
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conditions or inactivating agents. Optimisation of such carrier/support systems has the 

potential to enhance phage therapy to treat a range of infections. 

 

However, despite the current success in the development of phage based therapeutics and 

the relatively large number of phage products in the pipeline, one of the major hurdles for 

future phage therapy will be clinical approval. The need to address the antibiotic vacuum is 

currently driving a call for a more economically viable drug approval process, specifically to 

allow phage to enter clinical trials whilst being relieved of the rigid and time consuming 

regulatory framework associated with classical clinical trials [19]. In recognition of the unmet 

medical requirement for the development of novel antimicrobials, a recent (2015) 

amendment to the Federal Food, Drug and Cosmetic Act was introduced in the US proposing 

a modified pathway for the approval of antibacterial drugs within a highly defined, limited 

population. Denoted the Promise for Antibiotics and Therapeutics for Health (PATH) Act [90], 

this modification to current legislation may allow for the approval of certain antibacterial 

agents for use within a defined population for treatment of a serious infection, whilst 

circumventing restrictive, conventional clinical trials. This type of adaptive licencing, 

alongside possible implementation of compassionate use guidelines such as the Right to Try 

Act of 2015 [91] (allowing unlicensed phase I experimental drugs, biological products or 

devices to be used by patients diagnosed with a terminal illness), are encouraging signs that 

some obstacles facing future phage therapy are being addressed from a regulatory 

standpoint. The current clinical framework for conventional antibiotic approval may indeed 

prove unsuitable for whole phage which, as self-replicating biological entities are unlikely to 

conform to classical drug analysis. Following successful bacterial binding and infection, there 

is likely to be a significant increase in local phage concentration which may result in an 
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underestimation of phage efficacy via standard PK/PD analysis. Conversely, phage endolysins 

which show a far greater similarity to chemical antibiotics may conform more successfully to 

current clinical assessment.  

 

The future of bacteriophage therapy using targeted delivery systems looks promising for the 

treatment of serious, chronic and multidrug resistant bacterial infections, owing to the 

capability of controlling the pharmacokinetics/ dynamics of the phage, alongside offering 

protective and stabilising effects. However in order to continue driving the development of 

phage based therapeutics and the possible adaptation of regulatory pathways towards their 

approval, focus must be placed on stringent pre-clinical evaluation, with particular emphasis 

placed on phage concentration (MOI), biodistribution and suitable in vivo modelling. The 

current antibiotic crisis facing modern medicine appears to be shifting the paradigm in favour 

of non-traditional therapy, affecting both development and approval strategies. Thus the 

next 5-10 years will be an intriguing time for bacteriophage research, offering the potential to 

see application within the clinical setting.  

 

Executive Summary 

Encapsulation 

 Liposomal encapsulation can provide effective protection of phage from degradative 

effects including neutralisation by anti-phage antibodies and systematic clearance in 

vivo. Liposomes provide enhanced cellular uptake of phage in order to target 

intracellular diseases such as pneumonia and tuberculosis. 

 Nanoemulsions can stabilise phage via aqueous encapsulation manifesting as an 

increase in shelf life and higher infectivity rates.   
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 Encapsulation within modified alginate microspheres provides a protective strategy 

capable of preventing phage inactivation under simulated gastric conditions. Addition 

of stabilising agents such as maltose and maltodextrin allow for the formulation of dry 

powders containing phage with retention of phage activity and stability.  

Immobilisation 

 Anchoring to surfaces via plasma activation has successfully immobilised active phage 

capable of causing bacterial lysis. Retention of activity was achieved for several 

months under the correct conditions.  

Polymeric Formulations 

 Complexation with naturally occurring polymers can provide protection against 

temperature, pH and UV, increasing both the versatility and long term stability of 

complexed phage. Increased activity and stability has also been seen with phage 

endolysins through complexation with polycationic polymers.  

Aerosol Formulations 

 Aerosol formulations for treatment of pulmonary infection can effectively incorporate 

phage, both in liquid form for use in nebulizers and in dry form for use in inhalers.  

 By careful control of particle size, phage containing aerosols can successfully target 

pulmonary infection. However delivery formulation, storage conditions and the use of 

stabilisers must be considered individually for each phage administered in order to 

retain viability and stability.  

Stimuli Responsive Systems 

 Controlled release of both phage and phage endolysins offers benefits in terms of 

preventing unnecessary administration of an antimicrobial and protection of the 

cargo from environmental conditions until it is required.  
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 Successful triggered release systems have been shown to release phage/ phage lysins 

as a response to various stimuli including temperature and bacterial toxin production 

for the treatment of wound infection.  
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