3,177 research outputs found

    Quasi-Adiabatic Continuation in Gapped Spin and Fermion Systems: Goldstone's Theorem and Flux Periodicity

    Full text link
    We apply the technique of quasi-adiabatic continuation to study systems with continuous symmetries. We first derive a general form of Goldstone's theorem applicable to gapped nonrelativistic systems with continuous symmetries. We then show that for a fermionic system with a spin gap, it is possible to insert π\pi-flux into a cylinder with only exponentially small change in the energy of the system, a scenario which covers several physically interesting cases such as an s-wave superconductor or a resonating valence bond state.Comment: 19 pages, 2 figures, final version in press at JSTA

    A short proof of stability of topological order under local perturbations

    Full text link
    Recently, the stability of certain topological phases of matter under weak perturbations was proven. Here, we present a short, alternate proof of the same result. We consider models of topological quantum order for which the unperturbed Hamiltonian H0H_0 can be written as a sum of local pairwise commuting projectors on a DD-dimensional lattice. We consider a perturbed Hamiltonian H=H0+VH=H_0+V involving a generic perturbation VV that can be written as a sum of short-range bounded-norm interactions. We prove that if the strength of VV is below a constant threshold value then HH has well-defined spectral bands originating from the low-lying eigenvalues of H0H_0. These bands are separated from the rest of the spectrum and from each other by a constant gap. The width of the band originating from the smallest eigenvalue of H0H_0 decays faster than any power of the lattice size.Comment: 15 page

    Exact Multifractal Spectra for Arbitrary Laplacian Random Walks

    Full text link
    Iterated conformal mappings are used to obtain exact multifractal spectra of the harmonic measure for arbitrary Laplacian random walks in two dimensions. Separate spectra are found to describe scaling of the growth measure in time, of the measure near the growth tip, and of the measure away from the growth tip. The spectra away from the tip coincide with those of conformally invariant equilibrium systems with arbitrary central charge c1c\leq 1, with cc related to the particular walk chosen, while the scaling in time and near the tip cannot be obtained from the equilibrium properties.Comment: 4 pages, 3 figures; references added, minor correction

    Multi-level, multi-party singlets as ground states and their role in entanglement distribution

    Get PDF
    We show that a singlet of many multi-level quantum systems arises naturally as the ground state of a physically-motivated Hamiltonian. The Hamiltonian simply exchanges the states of nearest-neighbours in some network of qudits (d-level systems); the results are independent of the strength of the couplings or the network's topology. We show that local measurements on some of these qudits project the unmeasured qudits onto a smaller singlet, regardless of the choice of measurement basis at each measurement. It follows that the entanglement is highly persistent, and that through local measurements, a large amount of entanglement may be established between spatially-separated parties for subsequent use in distributed quantum computation.Comment: Corrected method for physical preparatio

    Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems

    Get PDF
    Gapped ground states of quantum spin systems have been referred to in the physics literature as being `in the same phase' if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on s[0,1]s \in [0,1], such that for each ss, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that 'belong to the same phase' are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an ss-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings' 'quasi-adiabatic evolution' technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the {\em spectral flow}, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s),0s1H(s), 0\leq s\leq 1.Comment: Updated acknowledgments and new email address of S

    Exact sampling of self-avoiding paths via discrete Schramm-Loewner evolution

    Full text link
    We present an algorithm, based on the iteration of conformal maps, that produces independent samples of self-avoiding paths in the plane. It is a discrete process approximating radial Schramm-Loewner evolution growing to infinity. We focus on the problem of reproducing the parametrization corresponding to that of lattice models, namely self-avoiding walks on the lattice, and we propose a strategy that gives rise to discrete paths where consecutive points lie an approximately constant distance apart from each other. This new method allows us to tackle two non-trivial features of self-avoiding walks that critically depend on the parametrization: the asphericity of a portion of chain and the correction-to-scaling exponent.Comment: 18 pages, 4 figures. Some sections rewritten (including title and abstract), numerical results added, references added. Accepted for publication in J. Stat. Phy

    Physical consequences of P\neqNP and the DMRG-annealing conjecture

    Full text link
    Computational complexity theory contains a corpus of theorems and conjectures regarding the time a Turing machine will need to solve certain types of problems as a function of the input size. Nature {\em need not} be a Turing machine and, thus, these theorems do not apply directly to it. But {\em classical simulations} of physical processes are programs running on Turing machines and, as such, are subject to them. In this work, computational complexity theory is applied to classical simulations of systems performing an adiabatic quantum computation (AQC), based on an annealed extension of the density matrix renormalization group (DMRG). We conjecture that the computational time required for those classical simulations is controlled solely by the {\em maximal entanglement} found during the process. Thus, lower bounds on the growth of entanglement with the system size can be provided. In some cases, quantum phase transitions can be predicted to take place in certain inhomogeneous systems. Concretely, physical conclusions are drawn from the assumption that the complexity classes {\bf P} and {\bf NP} differ. As a by-product, an alternative measure of entanglement is proposed which, via Chebyshev's inequality, allows to establish strict bounds on the required computational time.Comment: Accepted for publication in JSTA

    Development of ultrasound detection in American shad (Alosa sapidissima)

    Get PDF
    It has recently been shown that a few fish species, including American shad (Alosa sapidissima; Clupeiformes), are able to detect sound up to 180 kHz, an ability not found in most other fishes. Initially, it was proposed that ultrasound detection in shad involves the auditory bullae, swim bladder extensions found in all members of the Clupeiformes. However, while all clupeiformes have bullae, not all can detect ultrasound. Thus, the bullae alone are not sufficient to explain ultrasound detection. In this study, we used a developmental approach to determine when ultrasound detection begins and how the ability to detect ultrasound changes with ontogeny in American shad. We then compared changes in auditory function with morphological development to identify structures that are potentially responsible for ultrasound detection. We found that the auditory bullae and all three auditory end organs are present well before fish show ultrasound detection behaviourally and we suggest that an additional specialization in the utricle (one of the auditory end organs) forms coincident with the onset of ultrasound detection. We further show that this utricular specialization is found in two clupeiform species that can detect ultrasound but not in two clupeiform species not capable of ultrasound detection. Thus, it appears that ultrasound-detecting clupeiformes have undergone structural modification of the utricle that allows detection of ultrasonic stimulation

    Polynomial-time algorithm for simulation of weakly interacting quantum spin systems

    Full text link
    We describe an algorithm that computes the ground state energy and correlation functions for 2-local Hamiltonians in which interactions between qubits are weak compared to single-qubit terms. The running time of the algorithm is polynomial in the number of qubits and the required precision. Specifically, we consider Hamiltonians of the form H=H0+ϵVH=H_0+\epsilon V, where H_0 describes non-interacting qubits, V is a perturbation that involves arbitrary two-qubit interactions on a graph of bounded degree, and ϵ\epsilon is a small parameter. The algorithm works if ϵ|\epsilon| is below a certain threshold value that depends only upon the spectral gap of H_0, the maximal degree of the graph, and the maximal norm of the two-qubit interactions. The main technical ingredient of the algorithm is a generalized Kirkwood-Thomas ansatz for the ground state. The parameters of the ansatz are computed using perturbative expansions in powers of ϵ\epsilon. Our algorithm is closely related to the coupled cluster method used in quantum chemistry.Comment: 27 page

    Almost Commuting Matrices, Localized Wannier Functions, and the Quantum Hall Effect

    Full text link
    For models of non-interacting fermions moving within sites arranged on a surface in three dimensional space, there can be obstructions to finding localized Wannier functions. We show that such obstructions are KK-theoretic obstructions to approximating almost commuting, complex-valued matrices by commuting matrices, and we demonstrate numerically the presence of this obstruction for a lattice model of the quantum Hall effect in a spherical geometry. The numerical calculation of the obstruction is straightforward, and does not require translational invariance or introducing a flux torus. We further show that there is a Z2Z_2 index obstruction to approximating almost commuting self-dual matrices by exactly commuting self-dual matrices, and present additional conjectures regarding the approximation of almost commuting real and self-dual matrices by exactly commuting real and self-dual matrices. The motivation for considering this problem is the case of physical systems with additional antiunitary symmetries such as time reversal or particle-hole conjugation. Finally, in the case of the sphere--mathematically speaking three almost commuting Hermitians whose sum of square is near the identity--we give the first quantitative result showing this index is the only obstruction to finding commuting approximations. We review the known non-quantitative results for the torus.Comment: 35 pages, 2 figure
    corecore