122 research outputs found

    Laplacian growth with separately controlled noise and anisotropy

    Full text link
    Conformal mapping models are used to study competition of noise and anisotropy in Laplacian growth. For that, a new family of models is introduced with the noise level and directional anisotropy controlled independently. Fractalization is observed in both anisotropic growth and the growth with varying noise. Fractal dimension is determined from cluster size scaling with its area. For isotropic growth we find d = 1.7, both at high and low noise. For anisotropic growth with reduced noise the dimension can be as low as d = 1.5 and apparently is not universal. Also, we study fluctuations of particle areas and observe, in agreement with previous studies, that exceptionally large particles may appear during the growth, leading to pathologically irregular clusters. This difficulty is circumvented by using an acceptance window for particle areas.Comment: 13 pages, 15 figure

    Entropic Tightening of Vibrated Chains

    Full text link
    We investigate experimentally the distribution of configurations of a ring with an elementary topological constraint, a ``figure-8'' twist. Using vibrated granular chains, which permit controlled preparation and direct observation of such a constraint, we show that configurations where one of the loops is tight and the second is large are strongly preferred. This agrees with recent predictions for equilibrium properties of topologically-constrained polymers. However, the dynamics of the tightening process weakly violate detailed balance, a signature of the nonequilibrium nature of this system.Comment: 4 pages, 4 figure

    Red Queen Coevolution on Fitness Landscapes

    Full text link
    Species do not merely evolve, they also coevolve with other organisms. Coevolution is a major force driving interacting species to continuously evolve ex- ploring their fitness landscapes. Coevolution involves the coupling of species fit- ness landscapes, linking species genetic changes with their inter-specific ecological interactions. Here we first introduce the Red Queen hypothesis of evolution com- menting on some theoretical aspects and empirical evidences. As an introduction to the fitness landscape concept, we review key issues on evolution on simple and rugged fitness landscapes. Then we present key modeling examples of coevolution on different fitness landscapes at different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.). Springer Series in Emergence, Complexity, and Computation, 201

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    Dynamics of an Intruder in Dense Granular Fluids

    Get PDF
    We investigate the dynamics of an intruder pulled by a constant force in a dense two-dimensional granular fluid by means of event-driven molecular dynamics simulations. In a first step, we show how a propagating momentum front develops and compactifies the system when reflected by the boundaries. To be closer to recent experiments \cite{candelier2010journey,candelier2009creep}, we then add a frictional force acting on each particle, proportional to the particle's velocity. We show how to implement frictional motion in an event-driven simulation. This allows us to carry out extensive numerical simulations aiming at the dependence of the intruder's velocity on packing fraction and pulling force. We identify a linear relation for small and a nonlinear regime for high pulling forces and investigate the dependence of these regimes on granular temperature

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    Highly unsaturated fatty acid synthesis in marine fish: Cloning, functional characterization, and nutritional regulation of fatty acyl delta6 desaturase of Atlantic cod (Gadus morhua L.)

    Get PDF
    Fish contain high levels of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids that are crucial to the health of higher vertebrates. Biosynthesis of HUFA requires enzyme-mediated desaturation of fatty acids. Here we report cloning and functional characterisation of a ∆6 fatty acyl desaturase of Atlantic cod (Gadus morhua), and describe its tissue expression and nutritional regulation. PCR primers were designed based on the sequences of conserved motifs in available fish desaturases and used to isolate a cDNA fragment from liver of cod. The full-length cDNA was obtained by Rapid Amplification of cDNA Ends (RACE). The cDNA for the putative fatty acyl desaturase was shown to comprise 1980bp which included a 5’-UTR of 261bp and a 3’-UTR of 375bp. Sequencing revealed that the cDNA included an ORF of 1344 bp that specified a protein of 447 amino acids. The protein sequence included three histidine boxes, two transmembrane regions, and an N-terminal cytochrome b5 domain containing the haem-binding motif HPGG, all of which are characteristic of microsomal fatty acid desaturases. The cDNA displayed Δ6 desaturase activity in a heterologous yeast expression system. Quantitative real time PCR assay of gene expression in cod showed that the ∆6 desaturase gene, was highly expressed in brain, relatively highly expressed in liver, kidney, intestine, red muscle and gill, and expressed at much lower levels in white muscle, spleen and heart. In contrast, the abundance of a cod fatty acyl elongase transcript was high in brain and gill, with intermediate levels in kidney, spleen, intestine and heart, and relatively low expression in liver. The expression of the Δ6 desaturase gene and the PUFA elongase gene may be under a degree of nutritional regulation, with levels being marginally increased in livers and intestine of fish fed a vegetable oil blend by comparison with levels in fish fed fish oil. However, this was not reflected in increased Δ6 desaturase activity in hepatocytes or enterocytes, which showed very little highly unsaturated fatty acid biosynthesis activity irrespective of diet. The study described has demonstrated that Atlantic cod express a fatty acid desaturase gene with functional Δ6 activity in a yeast expression system. This is consistent with an established hypothesis that the poor ability of marine fish to synthesise HUFA is not due to lack of a Δ6 desaturase, but rather to deficiencies in other parts of the biosynthetic pathway. However, further studies are required to determine why the Δ6 desaturase appears to be barely functional in cod under the conditions tested

    Evidence of the Purely Leptonic Decay B- --> tau- nu_tau-bar

    Full text link
    We present the first evidence of the decay B- --> tau- nu_tau-bar using 414 fb^-1 of data collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. Events are tagged by fully reconstructing one of the B mesons in hadronic modes. We detect the signal with a significance of 3.5 standard deviations including systematics, and measure the branching fraction to be Br(B- --> tau- nu_tau-bar) = (1.79 +0.56-0.49(stat) +0.46-0.51(syst))*10^-4. This implies that f_B = 0.229 +0.036-0.031(stat) +0.034-0.037(syst) GeV and is the first direct measurement of this quantity.Comment: 6 pages, 3 figures, to appear in Physical Review Letter

    Observation of Ds1(2536)+ -> D+pi-K+ and angular decomposition of Ds1(2536)+ -> D*+K0S

    Full text link
    Using 462/fb of e+e- annihilation data recorded by the Belle detector, we report the first observation of the decay Ds1(2536)+ -> D+pi-K+. The ratio of branching fractions B(Ds1+ -> D+pi-K+)/B(Ds1+ -> D*+K0) is measured to be (3.27+-0.18+-0.37)%. We also study the angular distributions in the Ds1(2536)+ -> D*+K0S decay and measure the ratio of D- and S-wave amplitudes. The S-wave dominates, with a partial width of Gamma_S/Gamma_total=0.72+-0.05+-0.01.Comment: Submitted to Phys.Rev.D 16 pages, 6 figures, 3 table
    • 

    corecore