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Abstract We investigate the dynamics of an intruder pulled
by a constant force in a dense two-dimensional granular fluid
by means of event-driven molecular dynamics simulations.
In a first step, we show how a propagating momentum front
develops and compactifies the system when reflected by the
boundaries. To be closer to recent experiments (Candelier
and Dauchot in Phys Rev 81(1):011304, 2010; Phys Rev
103(12):128001, 2009), we then add a frictional force acting
on each particle, proportional to the particle’s velocity. We
show how to implement frictional motion in an event-driven
simulation. This allows us to carry out extensive numeri-
cal simulations aiming at the dependence of the intruder’s
velocity on packing fraction and pulling force. We identify a
linear relation for small and a nonlinear regime for high pull-
ing forces and investigate the dependence of these regimes
on granular temperature.

Keywords Granular medium · Drag force · Event driven
simulation with friction

1 Introduction

The response of an intruder to a pulling force is a rather
versatile tool to study the local nonequilibrium dynamics in
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various complex fluids, such as glasses [3], colloids [4,5] and
granular media [1,2,6,7]. The measured force-velocity rela-
tions reveal striking nonlinear behaviour close to the glass
and/or jamming transition. In the early experiments on col-
loids evidence was given for a threshold force even in the
fluid regime, whereas mode-coupling theory predicts such
behaviour only in the glassy phase. In the experiment of
Ref. [1,2] two transitions are observed: the first one, called
fluidization, separates a regime of continuous to intermit-
tent motion of the intruder. It occurs below the jamming
point (the second transition) and depends on the applied
pulling force. Experimentally it is observed even for the
smallest pulling force with the possibility of a dynamic tran-
sition inherent to the vibrated granular fluid for zero applied
force. In Ref. [8], the dynamics of an intruder was simu-
lated near the jamming point. One result of this study are
velocity-force relations which are linear for packing frac-
tion, η ≤ 0.833 and become nonlinear for η still closer to the
jamming point.

In contrast to [8], we discuss a stochastically driven sys-
tem, describing a fluidized granular state—similar to the
experimental setup in [1,2]. A recent mode-coupling the-
ory [9] predicts that such a “thermalized” granular fluid
undergoes a glass transition at a packing fraction below the
jamming point. This transition is different from both, the
jamming transition at zero temperature and the glass transi-
tion for either Newtonian or Brownian dynamics.

In this paper we use event driven simulations to analyze the
dynamics of an intruder in a two-dimensional system of hard
disks close to the glass transition. We compute force-veloc-
ity correlations in the linear and nonlinear regime, extract
the mobility for the linear regime and discuss scaling for the
nonlinear regime. Moreover we discuss the dependence on
the granular temperature.
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2 Model

We consider a bidisperse system of N hard disks in an area
A. Particles’ positions and velocities are denoted by {ri }N

i=1
and {vi }N

i=1. The size ratio Rs/Rb = 4 : 5 of small to big
particles is chosen as in the experiments of Refs. [1,2]. The
mass ratio follows from the disk like shape of the particles as
ms/mb = 16/25. The intruder with position r0 and velocity
v0 is chosen twice as large as the small particles, R0 = 2Rs

and m0 = 4ms .
The particles collide inelastically so that in each collision

energy is dissipated while momentum is conserved. The sim-
plest model ignores rotational degrees of freedom, allowing
for normal restitution only. The collision rules for two col-
liding particles (say 1 and 2) is given in terms of their relative
velocity g := v1 − v2

(g · n)′ = −ε(g · n). (1)

where ε is the coefficient of restitution and n denotes the unit
vector n := (r1 − r2)/|r1 − r2| at contact.

In between collisions the particles perform Brownian
motion, due to friction with a surrounding medium or with
the bottom plate. We model this by a frictional force in the
equation of motion: Ffr = −γ mv. For all finite values of the
friction coefficient γ , momentum is lost, whereas for γ = 0,
the total momentum is conserved.

Inelastic collisions give rise to a loss of energy ∝
1−ε2

2 T , where T denotes the granular temperature T =
1

2N

∑N
i=1 miv

2
i . To balance this dissipation the entire system

is driven stochastically (like an air-fluidized bed [10–12] or a
vibrating bottom plate [13–15]) by instantaneous kicks. The
momentum of the i-th particle pi (t) is changed according to

p′
i (t) = pi (t) + pdrξi (t) (2)

with 〈ξα
i (t)ξβ

j (t ′)〉 = δi jδαβδ(t − t ′) and zero mean
〈ξα

i (t)〉 = 0, and α = x, z denoting the cartesian compo-
nents. In the frictional case, γ �= 0, we kick single particles,
whereas for the frictionless case, γ = 0, we kick neighbour-
ing particles with equal and opposite momenta in order to
conserve the total momentum locally [16].

We want to investigate the dynamics of a tagged particle
under the action of a deterministic pulling force F. This so
called intruder with position r0 and velocity v0 is subject to
systematic kicks

p′
0(t) = p0(t) + F	t (3)

mimicking a constant force acting on the intruder. The fre-
quency of these systematic kicks (	t)−1 is chosen 4 orders of
magnitude higher than the frequency of the stochastic driving
and the collision frequency (see below). The systematic force
does work on the system, injecting momentum and energy.

Combining inelastic collisions, stochastic driving, pull-
ing force and friction, we arrive at the following equation of
motion

ṗα
i (t) = −γ pα

i (t) + Fδα,xδi,0 + d pα
i

dt

∣
∣
∣
∣
dr

+ d pα
i

dt

∣
∣
∣
∣
coll

. (4)

We aim to prepare the granular fluid without pulling force
to be under stationary conditions. This can be achieved by
balancing energy dissipation due to friction and inelastic col-
lisions by the stochastic driving. Without external forcing the
mean velocity of the particles vanishes, so that the granular
temperature, T = 1

2N

∑N
i=1 miv

2
i , is just the average kinetic

energy of the particles. Its time rate of change can be deduced
from 4 by multiplying with pα

i (t) yielding

1

2

d

dt
(pα

i )2(t)=−γ (pα
i (t))2+ 1

2

d

dt

∣
∣
∣
∣
dr

(pα
i )2+ 1

2

d

dt

∣
∣
∣
∣
coll

(pα
i )2.

(5)

The explicit calculation of the time derivations on the rhs are
beyond the scope of this paper but may be found elsewhere
[17,18]. The time rate of change of the granular temperature
then reads as follows:

dT

dt
= −2γ T − ωE

1 − ε2

2
T + fdr

p2
dr

2meff
, (6)

where the effective mass is given by meff = ms mb
ms+mb

. For
simplicity, we choose the driving frequency fdr equal to the
Enskog frequency ωE [19] and measure length and mass in
units, such that Rs = 1 and ms = 1. In the stationary state,
dT
dt = 0, the amplitude of the stochastic driving is given by:

p2
dr

2meff
= 2γ T

ωE
+ 1 − ε2

2
T . (7)

We prepare our system in a stationary state with T = 1, yield-
ing a numerical value for pdr depending on γ , ωE and ε.

3 Simulations

3.1 Implementation as event-driven simulation

In order to apply an event-driven algorithm to the dynam-
ics, as described by 4, we need to generalize the code to
account for damping (γ �= 0). As usual, events include colli-
sions of particles, wall collisions, subbox-wall collisions and
(discrete) driving events (kicks). Standard event driven algo-
rithms calculate the time of an upcoming event and advance
all particles to that time under the assumption that the particle
motion is ballistic. Hence, in between events, the velocities
do not change. The condition for a collision is Ri + R j =∣
∣ri (t•) − r j (t•)

∣
∣, i.e., the difference in the particles’ trajec-

tories at the collision time t• must be equal to the sum of their
radii. Plugging in the trajectories subject to ballistic motion

123



Dynamics of an intruder in a dense granular medium 249

ri, j (t•) = ri, j (t0) + vi, j (t0)(t• − t0), one finds a quadratic
equation, that must have a positive solution for (t• − t0) if
and only if a collision will occur [20,21].

In our case, the velocities decrease as vi, j (t�) = vi, j (t0)
exp(−γ (t� − t0)). Integration results in

ri, j (t
�) = ri, j (t0) + vi, j (t0)

1 − e−γ (t�−t0)

γ
. (8)

Inserting this into the condition for a collision, we find a simi-
lar condition for a collision except that (t•−t0) is replaced by
1−e−γ (t�−t0)

γ
, which is monotonically increasing in (t� − t0).

Since our (ballistic) event-driven code calculates (t•− t0) we
only have to replace the collision time by

t� − t0 = − 1

γ
log

(
1 − γ · (t• − t0)

)
. (9)

Hence, collisions will occur at the same place and in the
same order but at a different time and with different particles’
velocities, provided the place of the collision is within reach
of the particle. In detail, the maximum distance a particle
is able to travel is limited because of the friction slow-
ing the particle down. The maximal distance is given by
rmax

i = limt�→∞ ri (t�) = ri (t0) + vi (t0)/γ > ri (t•) that
must be larger than the distance to the place at which the
event will take place. Hence, (ri (t•) − ri (t0)) < vi (t0)/γ or
(t• − t0) < 1/γ . This is consistent with (9) which requires
log (1 − γ · (t• − t0)) to be negative for a positive collision
time. Advancing a particle to a different type of event (e.g.
kicks) is done in the same way.

Changing an existing event-driven simulation in the way
discussed enables us to simulate systems of hard disks and
spheres subject to friction almost as fast as without friction.
The systematic force on the intruder as described in (3) is
implemented as frequent kicks on the intruder. In order to
avoid an inelastic collapse, i.e., a infinite number of colli-
sions in a finite time interval, we use the same method as
described in [16] to circumvent it.

3.2 Equilibration and data aquisition

For packing fractions up to η = 0.8 we used the data sets
from [22] as initial conditions. For even denser systems, we
used a compactified system acquired as described in Sect. 4.1.

The data shown in Sect. 4.2 were obtained by first equil-
ibrating 100 different configurations and then switching on
the force on the intruder. The final velocity of the intruder was
measured after stationarity was attained. The time to reach a
stationary state depends on the packing fraction, the restitu-
tion coefficient and the applied force on the intruder. A typical
trajectory and its corresponding fluctuating velocity for the
largest packing fraction η = 0.8 and force F = 100,000 is
shown the inset of Fig. 4. The intruder moves approximately

3R0 in x-direction before fluctuating around its stationary
average velocity.

4 Results

The time rate of change of the total momentum P =
1
N

∑
i mi vi follows from 4:

Ṗα(t) = −γ Pα(t) + F

N
δα,x (10)

which is solved by

Pα(t) = Pα(0)e−γ t + δα,x
F

γ N
(1 − e−γ t ) (11)

Here we have used that the collisions as well as the random
driving conserve momentum. In the frictional case with γ �=
0, the total momentum goes to a constant, Px = F/(Nγ ),
whereas for the frictionless case with γ = 0, the momen-
tum grows linearly with time, Px = Ft/N . In the following
we shall mainly discuss the first case, because the frictional
model is closer to experiment. However, the frictionless case
allows us to study the propagation of momentum in an inelas-
tic fluid [23,24].

4.1 Frictionless state ( γ = 0 )

To that end, we consider a system with aspect ratio A = 5 : 1,
N = 5,000 and fixed walls, which reflect the particles elas-
tically. Momentum is conserved on average except for the
pulling force which constantly feeds (small) momenta into
the system, which are propagated by collisions away from
the source into all of the available area. Below the jamming
transition momentum transport is given by ballistic motion
of particles as well as by collisions. If the intruder starts at the
left hand side of the system and is pulled by the external force,
then only particles in the neighbourhood of the intruder will
feel the local momentum input for short times. The momen-
tum given to the intruder is distributed among the particles in
front (i.e. in the direction of the pulling force) of the intruder.
Again, these particles distribute their momenta by collisions
as well as by ballistic transport. A front of particles carrying
the momentum fed into the system by the intruder is formed
(see Fig. 1 top), propagates through the system (see Fig. 1
center) and ultimately collides with the hard wall (see Fig. 1
bottom). At this instant the momentum is reflected by the wall
and many particles end up in a highly compactified state with
a packing fraction η ≈ 0.839.

To analyze the momentum wave quantitatively, we plot
Px averaged over z in Fig. 2. The propagation front is well
defined, its center of mass moves with velocity Vcm = 16.51
and it broadens with time such that it’s width increases line-
arly with time, 	 = Vbrt (with Vbr = 10.89). Both velocities
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Fig. 1 Momentum transport with γ = 0 and hard walls. A vector denoting the particle’s velocity is assigned to each particle’s position. (T = 0.1,
ε = 0.9, F = 500, η = 0.8, t = 2.6, 6.3, 8.5)
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Fig. 2 Propagation of momentum wave; total momentum for 3 differ-
ent times, in dimensionless units; (parameters as in Fig. 1)

increase with pulling force, while their ratio is approximately
constant. Hence the observed propagation front cannot be
identified with linear sound but is presumably a shockwave
in agreement with the observations of Ref. [24].

4.2 Force-velocity relation ( γ �= 0 )

In the following, we consider a system with N = 20,000
grains, subject to friction (γ = 1) with hard walls in the
z-direction and periodic boundary conditions in the x-direc-

tion, allowing for a stationary current. We analyze the steady
state motion of the intruder for small and large forces as a
function of packing fraction for T = 1 and subsequently
compare these results to the same system with T = 0.04.

4.2.1 Linear regime: mobility of the intruder

For a small pulling force we expect a linear relation between
the velocity of the intruder and the force:

vI = μF, (12)

defining the mobility μ of the intruder.
In Fig. 3 we plot the velocity of the intruder versus force

and indeed do observe a linear regime for small pulling force.
From the slope we extract the mobility which is shown in
Fig. 4.

The breakdown of the mobility when the glass transition
is approached is clearly visible for both investigated ε. The
more inelastic system with ε = 0.7 shows increased mobil-
ities as compared to ε = 0.9. Since the particles are more
“sticky”, they tend to stay closer after a collision than in
the elastic limit, i.e., stronger density fluctuations are inher-
ent to systems with stronger inelasticity. This enlarges the
accessible space for the intruder compared to the system
with ε = 0.9, increasing its average velocity. Moreover, the
momentum of the intruder in the direction of the pulling force
is reduced due to collisions with other particles in front. In
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Fig. 3 Velocity versus pulling force for packing fractions 0.3 ≤ η ≤
0.8, parameters chosen: γ = 1, ε = 0.7 and aspect ratio A = 1 : 2
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Fig. 4 Mobility as a function of volume fraction for ε = 0.9 (stars)
and ε = 0.7 (squares). Inset Typical time dependence of the x position
and x velocity of the intruder for ε = 0.9, F = 100,000 and η = 0.8

the center of mass frame, the intruder is reflected backwards.
For the more inelastic system this kind of backscattering is
less effective (see Eq. 1), so that the velocity in the direction
of the force and hence the mobility is larger for the more
inelastic system.

4.2.2 Nonlinear regime

As the pulling force is increased, deviations from linear
behaviour are expected and observed. To investigate these
systematically we have applied forces in the range 1 ≤ F ≤
105 and show our data in a scaling plot in Fig. 5. Scaling
velocities by vdr = pdr/meff and forces by v2

dr ·η1/2 collapses
the data for large forces. The velocity of the intruder scales
algebraically with the pulling force, according to vI ∝ Fβ ,
β = 0.55.
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Fig. 5 Velocity-force relation for all pulling forces, ε = 0.9

The crossover between the linear and the algebraic regime
is accompanied by range of forces in which the intruder
velocity increases superlinearly with the applied force. This
is observed at high packing fractions only, see Fig. 3. We
conjecture that this shear thinning is due to the formation of
vortices which can only be formed at high packing fractions,
where momentum is conveyed almost instantaneously as the
disks are very close to each other. For low packing fractions,
the distance of neighbouring particles is too large for the for-
mation of vortices because the damping γ dissipates most of
the momentum.

4.2.3 Temperature dependence

The crossover from linear to nonlinear response depends on
the thermal velocity, vth � √

2T/m0 ≈ 0.7. For small pack-
ing fractions, this crossover actually occurs at vth as can be
seen e.g. in Fig. 3 for the smallest packing fractions. Decreas-
ing the temperature is expected to shrink the linear regime
also for higher densities. Hence we try to explore the force
velocity relation in the same system but with smaller ther-
mal velocity. Here we choose T = 0.04. For low pulling
forces, we expect the mobility to be larger than in the case
T = 1 since the decreased thermal motion does not disturb
the intruder travelling through the almost resting surrounding
disks. For high forces, we expect the intruder velocity to not
depend on the temperature, since in this case, the intruder’s
velocity is at least one order of magnitude higher than the
thermal velocity (see Fig. 5).

These expectations are indeed born out by the data. We
plot the force velocity relation for packing fractions η = 0.6
and 0.775 for both temperatures in Fig. 6. For high pulling
forces F ≥ 103, the intruder velocities for low and high
temperature collapse for both packing fractions as expected.
For η = 0.6 and T = 0.04, the crossover from the linear
regime to the nonlinear regime is shifted to smaller forces.
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Fig. 6 Velocity-force relation for strong pulling forces at different tem-
peratures and ε = 0.9

For η = 0.775 and T = 0.04, the linear regime is not even
detectable. The crossover is shifted by roughly two decades.
To explore the linear regime would require forces as small
as F = 10−2, at which the average intruder velocity would
be too small to be detectable.

5 Conclusion and outlook

We have generalised an event-driven algorithm to include
friction. As a first application, we have studied the dynam-
ics of an intruder pulled by an external force. In contrast
to previous simulations [8], we consider a fluidized granu-
lar medium, which is expected to undergo a glass transition
at a packing fraction below random close packing [9]. We
do indeed find a dramatic decrease of the mobility around
η = 0.8, in agreement with previous simulations without
pulling force and consistent with a glass transition. For large
pulling force, the data can be collapsed by scaling, following
a power law dependence vI ∝ Fβ with β = 0.55.

In the frictionless case the pulling force generates a
momentum wave propagating through the sample and thereby
compactifying it. We plan to investigate momentum transport
in more detail in the future. Furthermore the generalised event
driven algorithm will be useful more generally in the context
of frictional granular matter fluidized by air or water flow.
Work along these lines is in progress.
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