58 research outputs found

    Characterizing the kinetics of presepsin and associated inflammatory biomarkers in human endotoxemia

    Get PDF
    In this study, we describe the kinetics of a new potential inflammatory biomarker, presepsin, together with a panel of well-established biomarkers in a human endotoxemia study. We evaluated biomarker correlations and identified combinations that could hold valuable insights regarding the state of infection.Pharmacolog

    Quantitative systems pharmacology analysis of drug combination and scaling to humans: the interaction between noradrenaline and vasopressin in vasoconstriction

    Get PDF
    Background and PurposeDevelopment of combination therapies has received significant interest in recent years. Previously, a twoā€receptor oneā€transducer (2Rā€1T) model was proposed to characterize drug interactions with two receptors that lead to the same phenotypic response through a common transducer pathway. We applied, for the first time, the 2Rā€1T model to characterize the interaction of noradrenaline and arginineā€vasopressin on vasoconstriction and performed interā€species scaling to humans using this mechanismā€based model. Experimental ApproachContractile data were obtained from in vitro rat small mesenteric arteries after exposure to single or combined challenges of noradrenaline and arginineā€vasopressin with or without pretreatment with the irreversible Ī±ā€adrenoceptor antagonist, phenoxybenzamine. Data were analysed using the 2Rā€1T model to characterize the observed exposureā€“response relationships and drugā€“drug interaction. The model was then scaled to humans by accounting for differences in receptor density. Key ResultsWith receptor affinities set to published values, the 2Rā€1T model satisfactorily characterized the interaction between noradrenaline and arginineā€vasopressin in rat small mesenteric arteries (relative standard error ā‰¤20%), as well as the effect of phenoxybenzamine. Furthermore, after scaling the model to human vascular tissue, the model also adequately predicted the interaction between both agents on human renal arteries. Conclusions and ImplicationsThe 2Rā€1T model can be of relevance to quantitatively characterize the interaction between two drugs that interact via different receptors and a common transducer pathway. Its mechanistic properties are valuable for scaling the model across species. This approach is therefore of significant value to rationally optimize novel combination treatments. Pharmacolog

    Host-directed therapies for tuberculosis: quantitative systems pharmacology approaches

    Get PDF
    Host-directed therapies (HDTs) that modulate host-pathogen interactions offer an innovative strategy to combat Mycobacterium tuberculosis (Mtb) infections. When combined with tuberculosis (TB) antibiotics, HDTs could contribute to improving treatment outcomes, reducing treatment duration, and preventing resistance development. Translation of the interplay of host-pathogen interactions leveraged by HDTs towards therapeutic outcomes in patients is challenging. Quantitative understanding of the multifaceted nature of the host-pathogen interactions is vital to rationally design HDT strategies. Here, we (i) provide an overview of key Mtb host-pathogen interactions as basis for HDT strategies; and (ii) discuss the components and utility of quantitative systems pharmacology (QSP) models to inform HDT strategies. QSP models can be used to identify and optimize treatment targets, to facilitate preclinical to human translation, and to design combination treatment strategies.Animal science

    Unraveling the effects of acute inflammation on pharmacokinetics: a model-based analysis focusing on renal glomerular filtration rate and cytochrome P450 3A4-mediated metabolism

    Get PDF
    UNLABELLED\nMETHODS\nRESULTS\nCONCLUSION\nBACKGROUNDĀ ANDĀ OBJECTIVES: Acute inflammation caused by infections or sepsis can impact pharmacokinetics. We used a model-based analysis to evaluate the effect of acute inflammation as represented by interleukin-6 (IL-6) levels on drug clearance, focusing on renal glomerular filtration rate (GFR) and cytochrome P450 3A4 (CYP3A4)-mediated metabolism.\nA physiologically based model incorporating renal and hepatic drug clearance was implemented. Functions correlating IL-6 levels with GFR and in vitro CYP3A4 activity were derived and incorporated into the modeling framework. We then simulated treatment scenarios for hypothetical drugs by varying the IL-6 levels, the contribution of renal and hepatic drug clearance, and protein binding. The relative change in observed area under the concentration-timeĀ curve (AUC) was computed for these scenarios.\nInflammation showed opposite effects on drug exposure for drugs eliminated via the liver and kidney, with the effect of inflammation being inversely proportional to the extraction ratio (ER). For renally cleared drugs, the relative decrease in AUC was close to 30% during severe inflammation. For CYP3A4 substrates, the relative increase in AUC could exceed 50% for low-ER drugs. Finally, the impact of inflammation-induced changes in drug clearance is smaller for drugs with a larger unbound fraction.\nThis analysis demonstrates differences in the impact of inflammation on drug clearance for different drug types. The effects of inflammation status on pharmacokinetics may explain the inter-individual variability in pharmacokinetics in critically ill patients. The proposed model-based analysis may be used to further evaluate the effect of inflammation, i.e., by incorporating the effect of inflammation on other drug-metabolizing enzymes or physiological processes.Pharmacolog

    Unraveling antimicrobial resistance using metabolomics

    Get PDF
    The emergence of antimicrobial resistance (AMR) in bacterial pathogens represents a global health threat. The metabolic state of bacteria is associated with a range of genetic and phenotypic resistance mechanisms. This review provides an overview of the roles of metabolic processes that are associated with AMR mechanisms, including energy production, cell wall synthesis, cell-cell communication, and bacterial growth. These metabolic processes can be targeted with the aim of re-sensitizing resistant pathogens to antibiotic treatments. We discuss how state-of-the-art metabolomics approaches can be used for comprehensive analysis of microbial AMR-related metabolism, which may facilitate the discovery of novel drug targets and treatment strategies.Analytical BioScience

    Does nonlinear blood-brain barrier transport matter for (lower) morphine dosing strategies?

    Get PDF
    Morphine blood-brain barrier (BBB) transport is governed by passive diffusion, active efflux and saturable active influx. This may result in nonlinear plasma concentration-dependent brain extracellular fluid (brainECF) pharmacokinetics of morphine. In this study, we aim to evaluate the impact of nonlinear BBB transport on brainECF pharmacokinetics of morphine and its metabolites for different dosing strategies using a physiologically based pharmacokinetic simulation study. We extended the human physiologically based pharmacokinetic LeiCNS-PK3.0, model with equations for nonlinear BBB transport of morphine. Simulations for brainECF pharmacokinetics were performed for various dosing strategies: intravenous (IV), oral immediate (IR) and extended release (ER) with dose range of 0.25-150Ā mg and dosing frequencies of 1-6 times daily. The impact of nonlinear BBB transport on morphine CNS pharmacokinetics was evaluated by quantifying (i) the relative brainECF to plasma exposure (AUCu,brainECF/AUCu,plasma) and (ii) the impact on the peak-to-trough ratio (PTR) of concentration-time profiles in brainECF and plasma. We found that the relative morphine exposure and PTRs are dose dependent for the evaluated dose range. The highest relative morphine exposure value of 1.4 was found for once daily 0.25Ā mg ER and lowest of 0.1 for 6-daily 150Ā mg IV dosing. At lower doses the PTRs were smaller and increased with increasing dose and stabilized at higher doses independent of dosing frequency. Relative peak concentrations of morphine in relation to its metabolites changed with increasing dose. We conclude that nonlinearity of morphine BBB transport affects the relative brainECF exposure and the fluctuation of morphine and its metabolites mainly at lower dosing regimens.Pharmacolog

    Design principles of collateral sensitivity-based dosing strategies

    Get PDF
    Collateral sensitivity (CS)-based antibiotic treatments, where increased resistance to one antibiotic leads to increased sensitivity to a second antibiotic, may have the potential to limit the emergence of antimicrobial resistance. However, it remains unclear how to best design CS-based treatment schedules. To address this problem, we use mathematical modelling to study the effects of pathogen- and drug-specific characteristics for different treatment designs on bacterial population dynamics and resistance evolution. We confirm that simultaneous and one-day cycling treatments could supress resistance in the presence of CS. We show that the efficacy of CS-based cycling therapies depends critically on the order of drug administration. Finally, we find that reciprocal CS is not essential to suppress resistance, a result that significantly broadens treatment options given the ubiquity of one-way CS in pathogens. Overall, our analyses identify key design principles of CS-based treatment strategies and provide guidance to develop treatment schedules to suppress resistance.Microbial Biotechnolog

    Evidence-based drug treatment for special patient populations through model-based approaches

    Get PDF
    The majority of marketed drugs remain understudied in some patient populations such as pregnant women, paediatrics, the obese, the critically-ill, and the elderly. As a consequence, currently used dosing regimens may not assure optimal efficacy or minimal toxicity in these patients. Given the vulnerability of some subpopulations and the challenges and costs of performing clinical studies in these populations, cutting-edge approaches are needed to effectively develop evidence-based and individualized drug dosing regimens. Five key issues are presented that are essential to support and expedite the development of drug dosing regimens in these populations using model-based approaches: 1) model development combined with proper validation procedures to extract as much valid information from available study data as possible, with limited burden to patients and costs; 2) integration of existing data and the use of prior pharmacological and physiological knowledge in study design and data analysis, to further develop knowledge and avoid unnecessary or unrealistic (large) studies in vulnerable populations; 3) clinical proof-of-principle in a prospective evaluation of a developed drug dosing regimen, to confirm that a newly proposed regimen indeed results in the desired outcomes in terms of drug concentrations, efficacy, and/or safety; 4) pharmacodynamics studies in addition to pharmacokinetics studies for drugs for which a difference in disease progression and/or in exposure-response relation is anticipated compared to the reference population; 5) additional efforts to implement developed dosing regimens in clinical practice once drug pharmacokinetics and pharmacodynamics have been characterized in special patient populations. The latter remains an important bottleneck, but this is essential to truly realize evidence-based and individualized drug dosing for special patient populations. As all tools required for this purpose are available, we have the moral and societal obligation to make safe and effective pharmacotherapy available for these patients to
    • ā€¦
    corecore