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ARTICLE

Design principles of collateral sensitivity-based
dosing strategies
Linda B. S. Aulin 1✉, Apostolos Liakopoulos2, Piet H. van der Graaf1,3, Daniel E. Rozen 2 &

J. G. Coen van Hasselt 1✉

Collateral sensitivity (CS)-based antibiotic treatments, where increased resistance to one

antibiotic leads to increased sensitivity to a second antibiotic, may have the potential to limit

the emergence of antimicrobial resistance. However, it remains unclear how to best design

CS-based treatment schedules. To address this problem, we use mathematical modelling to

study the effects of pathogen- and drug-specific characteristics for different treatment

designs on bacterial population dynamics and resistance evolution. We confirm that simul-

taneous and one-day cycling treatments could supress resistance in the presence of CS. We

show that the efficacy of CS-based cycling therapies depends critically on the order of drug

administration. Finally, we find that reciprocal CS is not essential to suppress resistance, a

result that significantly broadens treatment options given the ubiquity of one-way CS in

pathogens. Overall, our analyses identify key design principles of CS-based treatment stra-

tegies and provide guidance to develop treatment schedules to suppress resistance.
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Antimicrobial resistance (AMR) is a worldwide health
threat due to the reduction of clinically effective anti-
biotics. Current drug discovery pipelines of new-in-class

antibiotic agents are insufficient to offset the emergence of new
AMR1. Innovative strategies to reduce the rate that AMR devel-
ops are thus critically needed. Treatment with antibiotics in
individual patients represents one important situation where de
novo AMR may emerge2,3. However, current clinical antibiotic-
treatment strategies, i.e., which types of antibiotics are included as
well as timing and dosage, typically do not explicitly consider
within-host emergence of AMR. Instead, current strategies used
in clinical practise are primarily based on exposure targets that
are associated with sufficient bacterial kill in preclinical studies, or
with clinical outcomes in patient studies4. Thus, there is a need
for clinical dosing strategies specifically designed to suppress
AMR emergence5.

Trade-offs associated with AMR are of increasing interest to
design antibiotic dosing strategies that suppress the within-host
emergence of AMR6. In this context, collateral sensitivity (CS),
where resistance to one antibiotic leads to increased sensitivity to
a second antibiotic, has been proposed as a potential strategy to
suppress AMR7,8. CS has been characterized in vitro, typically by
evolving AMR strains and then quantifying correlated changes in
the sensitivity to other antibiotics7,9–11. CS effects have been
characterized for several clinically relevant pathogens, including
Escherichia coli9, Pseudomonas aeruginosa12, Enterococcus
faecalis13, Streptococcus pneumoniae14, and Staphylococcus
aureus15. CS relationships between antibiotics can either be one-
directional, where decreased sensitivity to one antibiotic show CS
to a second antibiotic but not the reverse, or reciprocal, where
decreased sensitivity to either of the antibiotics results in CS to
the other. Reciprocal CS is often considered a prerequisite for
effective CS-based treatments, but such relationships have been
less frequently observed compared to one-directional CS7,9–15.

CS-based treatment strategies can use different designs to
combine antibiotics showing a CS relationship, including simul-
taneous, sequential, or cyclic (alternating) administration. For
example, consider a cycling drug strategy using two antibiotics
showing reciprocal CS (Fig. 1). Initial treatment would start with
antibiotic A. This leads to resistance to A and a corresponding
increase in sensitivity to B. When treatment is switched to anti-
biotic B, the inverted selection pressure leads to the eradication of
cells that are resistant to antibiotic A (due to CS), but possibly
favouring any remaining cells that are resistant to B, but

susceptible to antibiotic A. By cycling between the two drugs to
sequentially eliminate all cells that show reciprocal CS, complete
eradication can be achieved. Although the conceptual strategies of
CS-based treatments have been discussed6, it remains unclear
when CS-based dosing strategies are most likely to be beneficial,
and how to design specific multi-drug antibiotic dosing schedules
based on CS. Furthermore, it is unclear how pathogen-specific
factors, such as CS effect magnitude and directionality, fitness
costs of resistance, and mutation rates, as well as pharmacological
factors related to pharmacokinetics and pharmacodynamics for
different drug types, can affect optimal dosing schedules.

Experimental in vitro studies are essential to characterize the
incidence, evolvability and magnitude of CS, all of which are
important but isolated components that may contribute to the
success of CS-based treatments7,9–15. However, to translate
in vitro CS findings to in vivo or clinical treatment scenarios,
consideration of pharmacodynamic (PD) and pharmacokinetic
(PK) factors is essential, as these determine the differential impact
of different antibiotics on the concentration-dependent effects of
bacterial growth, inhibition and killing16,17. By affecting bacterial
dynamics, antibiotic PK-PD can have a profound influence on
resistance evolution, and are therefore key elements to design
optimised CS-informed treatments. In addition, it is necessary to
disentangle the respective impacts of these separate parameters.
Doing so requires a highly controlled system, where each factor
can be modified separately; this level of control cannot be
established experimentally. To this end, a mathematical model-
ling approach can be highly valuable, as such models permit
precise control of each factor. In addition, mathematical models
are important tools to integrate multiple biological and phar-
macological factors contributing to treatment outcomes, includ-
ing different PK parameters of specific antibiotics in patients,
antibiotic-specific PD parameters, and pathogen-specific char-
acteristics such as strain fitness and the magnitude of CS effects.
Thus, using a mathematical modelling approach allows us to
address key questions relating to CS-based treatments that have
yet to be fully answered.

A number of mathematical models have been developed to
evaluate multi-drug therapies in relation to collateral effects, often
using shifts in the minimum inhibitory concentration (MIC) or
other summary metrics as endpoints. These models include
deterministic18 and Markov19 models evaluating antibiotic cycling
in vitro and in silico, which provide insight into the importance of
the design of the cycling regimen. Furthermore, a stochastic
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Fig. 1 Concept of collateral sensitivity (CS)-based treatments using two hypothetical drugs, antibiotic A and B, based on Pál et al.53. A Reciprocal CS
relationship between antibiotic A and B. B Theoretical cycling regimen exploiting CS between antibiotic A and B to suppress resistance.
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evolution model has been developed to assess the robustness of
collateral sensitivity20. None of these models, however, characterise
the bacterial dynamics underlying resistance evolution. In addition,
these models do not include PK-PD relationships and lack con-
sideration of clinical PK, which are key factors when translating the
findings into clinical dosing strategies. Udekwu and Weiss devel-
oped a deterministic PK-PD model to study clinically relevant
cycling schedules for CS-informed treatments and evaluated their
ability to delay the emergence of antibiotic resistance21. This
simulation study serves as an important step toward designing
clinically effective CS-based treatments. However, to take further
steps towards such treatments, there is a need for a more com-
prehensive evaluation of the impact of several pharmacological and
pathogen-associated factors related to dosing schedule designs, as
well as specifically evaluate the impact of CS effects on treatment
outcomes in comparison to the situation without CS.

In the current study, we aim to build on previously established
models in order to determine if and when CS-based dosing
schedules lead to suppression of within-host emergence of anti-
biotic resistance. We utilise a mathematical modelling approach
to comprehensively study the influence of key pathogen-specific
factors and the contribution of PK and PD properties to identify
key design principles to inform rational design of antibiotic
multi-drug dosing schedules that suppress AMR.

Results
We developed a model framework including PK-PD relationships
for antibacterial drug A (DA) and drug B (DB) on bacterial
population dynamics including four states, which include an
antibiotic sensitive bacterial subpopulation (WT), one mutant
subpopulation resistant to DA but sensitive to DB (RA), one
mutant subpopulation sensitive to DA but resistant to DB (RB),
and one double mutant subpopulation resistant to both DA and
DB (RAB) (Fig 2). The framework was then applied to investigate
the impact of different treatment strategies for different drug- and
pathogen-specific characteristics, and different CS magnitudes.

Drug type and treatment schedule influence the probability of
resistance. We simulated multi-drug antibiotic treatments using
two antibiotics of the same type, with either no (0%) or reciprocal
CS (50 or 90% decrease compared with MICWT). We show that
the impact of reciprocal CS on resistance dynamics is dependent
on the simulated drug type and dosing regimen (Fig. 3). In our
simulations, treatments with concentration-dependent antibiotics
could achieve full CS-based resistance suppression for dosing
schedules using one-day cycling interval (Fig. 3C, G) or simul-
taneous administration (Fig. 3D, H). A 50% MIC reduction was
sufficient to achieve this effect for all of the four treatments,
which is relevant in light of experimental results consistent with
these CS magnitudes7,9,14,15,19. Treatments using time-dependent
antibiotics dosed according to these schedules (Fig. 3K, L, O, P)
were efficient in fully suppressing resistance with or without CS.
Full resistance suppression was not achieved by any of the other
treatment schedules tested. Although none of the CS-based
treatments dosed according to the three-day cycling regimen
managed to fully suppress resistance, the ones using time-
dependent antibiotics (Fig. 3J, N) did show reduced probability of
resistance (PoR) in the presence of CS. For these treatments, the
effect of CS was most prominent for bacteriostatic antibiotics
(Fig. 3N) where a CS magnitude of 90% resulted in a decrease of
the PoR of 12.6% for RAny, defined as the presence of any resistant
subpopulation at the end of treatment. Importantly, we also find
that for some treatments the presence of CS was not only unable to
fully suppress resistance, but favoured the formation of double
resistant mutants (Fig. 3F, I, M).

Directionality of CS effects influence the probability of resis-
tance. We next sought to determine if reciprocity is a requirement
for CS-based treatments to suppress de novo resistance. We find
that bactericidal and bacteriostatic drugs showed the same overall
behaviour for treatment outcomes when tested in relation to CS
directionality (Supplementary Fig. 1). We specifically focus on the
one-day cycling and simultaneous treatment that appeared to be
most successful in fully suppressing resistance for reciprocal CS.
We find that for the one-day cycling regimen, the presence of
one-directional CS for the second administrated antibiotic (DB) is
sufficient to fully suppress resistance development. This is illu-
strated for treatments using concentration-dependent bacterio-
static antibiotic in Fig. 4. In this scenario, one-directional CS
results in resistance levels close to the reciprocal scenario (e.g.,
one-directional 50% CS resulted in 0.4% PoR of RAny for bac-
teriostatic (Fig. 4A) vs 0% for reciprocal CS (Fig. 4B)). In contrast,
when CS is only present for the first antibiotic administered (DA),
we found resistance levels close to the scenario without any CS
(PoR 11.5% (Fig. 4D) vs 12.4% (Fig. 4C)). Overall, these results
suggest that when using a drug-pair without reciprocity, the order
of administration has a large impact on treatment success and
that therapy should be initiated with the antibiotic for which
there is no CS. This strategy allows for evolution and growth of
RA on the first day, while RB is suppressed by DA. When the
selection is inverted on day two, the low levels of RA are effec-
tively killed by DB in the presence of CS. In the absence of CS
towards DB, RA will reach high levels, which can lead to further
evolution of RAB. When simultaneous administration of
concentration-dependent antibiotics is used, we found that reci-
procity is necessary to fully suppress resistance, as one-directional
CS will only suppress resistance for the resistant subpopulation
which shows CS (Fig. 4A and B). However, one-directional CS
did reduce the PoR for RAny by ~50% (ΔPoR −19.6% and
−19.2% for CSA and CSB, respectively) for both of these
treatments.

Administration sequence and antibiotic type influence resis-
tance suppression. As CS does not only occur between antibiotics
of the same type, it is important to understand how the admin-
istration sequence of different-type antibiotics affects resistance
evolution. Our results for one-day cycling and simultaneous
schedules demonstrated that the suppression of de novo resis-
tance was mainly driven by the first administered antibiotic (DA)
for all non-simultaneous regimens (Supplementary Fig. 2),
highlighting the importance of drug sequence. In line with our
findings for multi-drug treatments using same-type antibiotics
(Fig. 3), resistance was fully suppressed from CS only when using
one-day cycling or simultaneous administration dosing regimens.
Particularly for one-day cycling regimens (Fig. 5), initiating
treatment with a time-dependent antibiotic was more effective at
suppressing resistance in the presence of reciprocal CS compared
to the initial administration of a concentration-dependent
antibiotic.

CS-based multi-drug treatments show the greatest promise for
antibiotics with a narrow therapeutic window. Although many
antibiotics are well-tolerated and can be dosed well above the
MIC of susceptible strains others, e.g., aminoglycosides, display a
narrow-therapeutic window due to toxicity22–24. Understanding
the relationship between average steady-state concentrations (Css)
and the impact of CS on de novo resistance development would
help identify in which clinical scenarios CS could be exploited to
improve treatment. To this end, we simulated a set of dosing
regimens (using same-type antibiotics) resulting in Css ranging
between 0.5 and 4 × MICWT. These simulations revealed that CS
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has the greatest impact on RAny for Css close to the MICWT (Fig. 6
and Supplementary Fig. 3). Most treatments showing a benefit of
CS lost the advantage when the Css exceeded 1.5 × MICWT. The
only exception was one-day cycling treatment using
concentration-dependent bacteriostatic drugs, which retained an
advantage up to Css of 2 × MICWT (Fig. 6G).

Fitness cost of antibiotic resistance can contribute to the suc-
cess of CS-based treatments. Resistance evolution is commonly
associated with fitness costs25. We studied the impact of different
levels of fitness cost on the suppression of de novo resistance
development (Fig. 7). Fitness cost was included as a fractional
reduction of growth per mutation, thereby doubly penalising the
double resistant mutant RAB. In the absence of CS, fitness cost
below 50% per mutation had little impact (|ΔPoR| ≥5%) on RAny

for most treatment scenarios. However, when concentration-
dependent bactericidal drugs were dosed simultaneously the
presence of fitness costs slightly increased the PoR (maximum
ΔPoR 10.2%). The presence of fitness cost increased the impact of
CS on PoR the three-day cycling regimen using time-dependent
antibiotics (Fig. 7J and N), which failed to fully suppress resis-
tance in the presence of fitness cost-free CS. The fitness cost
generating the largest impact of CS for these treatments on PoR
was 40% and 50% cost per mutation when treated with bacter-
iostatic (Δ PoR −48.4%) and bactericidal (Δ PoR −42.8%) drug,
respectively.

CS-based simultaneous treatment designs suppress pre-
existing resistance. The presence of rare pre-existing resistant
cells in the bacterial population establishing an infection is
clinically associated with antibiotic-treatment failure26. We here
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studied if CS-based dosing schedules can be used to eradicate
such a heterogeneous population (Fig. 8 and Supplementary
Fig. 4). In the absence of CS, most of the simulated treatment
scenarios resulted in a higher probability of the expansion and
fixation of pre-existing resistant subpopulations. As with de novo
resistance and cycling regimens, the benefit of reciprocal CS was
only apparent when resistance was towards the second antibiotic
(subpopulation RB). This is illustrated with the one-day cycling
treatments shown in Fig. 8, where all CS-based treatments could
suppress PoR for pre-existing RB, but failed for all with pre-
existing RA. For three-day cycling regimens and pre-existing
resistance towards the first antibiotic, CS was shown to increase
the PoR for RAB (Supplementary Fig. 4). In the presence of CS, all
simultaneously dosed treatments were effective in fully suppres-
sing resistance regardless of pre-existing resistance (Supplemen-
tary Fig. 5).

The combined effect of CS and mutation rate on resistance
development differs between treatments. Because some anti-
biotic treatments can enhance the genome-wide mutation rate in
pathogenic bacteria27, we included a set of simulations with
higher mutation rates than 10−9 mutations/bp/h (10−8–10−6

mutations/bp/h). We show that the impact of mutation rate on
the PoR was dependent on the combination of treatment design
and the antibiotic type used, especially in the presence of CS
(Fig. 9). The largest impact of the interaction between CS and
mutation on PoR was found for the extremes of the antibiotic
switching time, i.e., one-day cycling and sequential treatment
design (maximum ΔPoR −57.8% and −52.4%, respectively). In

the absence of CS, an increased mutation rate generally led to an
increased PoR, with the exception of simultaneous administration
of time-dependent antibiotics, which actually resulted in full
suppression of resistance regardless of CS and mutation rate. For
sequential treatments using time-dependent antibiotics with
reciprocal CS (Fig. 9I, M), the highest PoR was observed at a
mutation rate of 10−7 mutations/bp/h, and decreased at higher
mutation rates. For all mutation rates and in the presence of CS,
simultaneous treatments suppressed resistance.

Discussion
Our theoretical analysis shows that CS may be exploited to design
treatment schedules that suppress within-host development of
antibiotic resistance, with CS-based treatments holding the most
potential for antibiotics with narrow-therapeutic windows. Our
simulations indicated that several previously unrecognised factors
need to be considered to ensure optimal design of CS-based
dosing regimens, which include antibiotic PD characteristics, the
magnitude and reciprocity of CS effects, and the effect of fitness
cost of antibiotic-resistance mutations. In addition, we found that
antibiotic sequence has strong impact on the success of CS-based
cycling treatments. An overview of the main insights and derived
design principles we obtained can be found in Supplementary
Table 1.

CS-based dosing schedules have mainly considered reciprocal
CS scenarios, where resistance against one antibiotic leads to
increased sensitivity to a second antibiotic and vice versa7,15. We
show, however, that one-directional CS can be sufficient to sup-
press resistance. For a one-day cycling regimen, the one-
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was more effective in suppressing resistance than with a concentration-dependent antibiotic in the presence of reciprocal CS. Each simulated scenario was
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directional CS effects were nearly identical to the scenario that
considered reciprocal CS (Fig. 4A vs 4B), but only when bacteria
showed CS to the second drug administrated. When CS was only
present for the first antibiotic (DA) (Fig. 4D), initial bacterial
growth was extensive, thus leading to increased risk of the double
resistant subpopulation emerging. Because one-directional CS
relationships are much more common than reciprocal CS
relationships7,9–15, this significantly expands the number of clin-
ical scenarios for which effective CS-based treatments can be
designed.

We find that CS-based treatments show the greatest promise for
antibiotics with a narrow-therapeutic window. The therapeutic
window of an antibiotic is defined by the drug exposure, or con-
centration range, leading to sufficient efficacy without associated
toxicity. In the majority of our simulations, we have studied dosing
schedules leading to an antibiotic steady-state concentration (Css)
of 1.5 × MICWT (or 0.75 × MICWT for simultaneous dosing
regimens), which led to complete killing of the sensitive population
but did allow emergence of resistance to occur. This concentration
can be considered to reflect a narrow-therapeutic window anti-
biotic, e.g., where the antibiotic concentration required for bacterial
killing is closer to the MIC because of the occurrence of (severe)
toxicities at higher concentrations. Indeed, for concentrations
(much) higher than the MIC, or simultaneously administrating
two drugs above the MIC, the benefit of CS rapidly disappears
(Fig. 6). This means that especially for antibiotics with a narrow-
therapeutic window such as polymyxins or aminoglycosides,
exploiting CS-based dosing schedules offers significant

opportunities for successful antibiotic treatment while minimizing
both the risks of antibiotic-related toxicity and de novo antibiotic-
resistance development. In addition, for simultaneously admini-
strated antibiotics, the presence of CS could provide the possibility
to lower the dosage of the individual antibiotics without decreasing
efficacy.

Cycling based dosing regimens are frequently discussed as a
strategy to improve antibiotic treatment when CS occurs. In our
simulations, we show that for one-day cycling treatments anti-
biotic type (Fig. 5), directionality of CS (Fig. 4), and the identity
of any pre-existing resistance subpopulation (Fig. 8) should be
considered when choosing which drug to administer first. We,
specifically, show that the type of the first administrated antibiotic
had a larger impact on the PoR compared to the type of the
second administrated antibiotic. The presence of CS to the second
administrated antibiotic had a greater effect PoR compared to CS
to the first administrated antibiotic. In the case of pre-existing
resistance, the PoR was smaller if there was pre-existing resistance
to the second administrated drug compared to the first antibiotic.
These findings are consistent with previous studies showing that
the probability of resistance is influenced by the sequence of
antibiotics28, and optimized cycling sequences outperformed
random drug cycling regimens13. In addition, we show that one-
day cycling outperforms a three-day cycling interval, both in the
presence and absence of CS. This is in agreement with previous
in vitro studies showing an advantage of shorter cycling
intervals29. Furthermore, in the context of cycling, or alternating
antibiotic treatments, consideration of the pharmacokinetics, e.g.,
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the time-varying antibiotic concentrations, was found to be
important because the remaining concentration of the first anti-
biotic administered added to the total drug effect (illustrated in
Fig. 10). Therefore, the antibiotic switch contributes to a higher
total drug effect than after repeated administration of the same
drug, even in the absence of collateral effects. In our simulations,
the impact of this increased effect is dependent on the type of the
antibiotic and was shown to be especially important for time-
dependent antibiotics. This highlights the importance of con-
sidering both PK and PD when designing effective antibiotic
treatments, something that is overlooked when drawing conclu-
sion regarding treatments solely based on static in vitro models.

To better characterize the population dynamics of pathogens in
response to antibiotic treatment under the presence of CS, we
studied the effect of fitness costs of antibiotic resistance and
mutation rates leading to antibiotic resistance. We find that intro-
ducing fitness costs had a negligible effect on PoR for the majority
of the simulated CS-based treatments, with the exception of the
three-day cycling using time-dependent antibiotics (Fig. 7J and N),
where introducing fitness costs improved the CS-based treatments
by preventing resistant bacteria from reaching high densities before
the first antibiotic switch. Typically, the PoR increased with
mutation rate, which is in line with previous findings of mutator
strains being associated with higher level of resistance30,31. For
pathogens with a low mutation rate and/or administration of non-
mutagenesis-inducing antibiotics (10−9 mut/bp/h), one-day cycling
regimens and simultaneous antibiotic treatments are most relevant
to benefit from CS, whereas for high mutation rates (e.g., 10−6 mut/
bp/h), sequential and simultaneous antibiotic treatments are the
most beneficial (Fig. 9). This means that in situations when the
occurrence of mutator strains is likely (e.g., such as in cystic fibrosis
lung infections32) and/or when the administered antibiotics induce

mutagenesis (e.g., fluoroquinolones33), this should be considered in
the design of dosing schedules. With respect to the competition
between different bacterial subpopulations occurring in vivo, we
included a bacterial carrying capacity which introduces clonal
competition. During clonal competition, competition between
subpopulations can lead to their suppression, e.g., high densities for
one subpopulation can suppress the growth of a second sub-
population, even if the second population might be more fit.
Treatments giving rise to clonal competition-based containment,
where the selection pressure favours specific subpopulations which
will in turn suppress others due to the capacity limitation of the
system, have been suggested as a potential strategy to suppress
AMR34. In our simulation, we observe a clear impact of clonal
competition. When CS is present, single resistant subpopulations
are unable to reach high enough levels to suppress the growth of the
double resistant mutant, which allows the double mutant to take
over, for some treatments. This supports the value of characterizing
CS-based treatments beyond the quantified summary metric of
collateral effect.

Our study advances the work by Udekwu and Weiss21 by
explicitly comparing treatment outcomes to a base scenario
without CS to determine the specific contribution of CS effects,
and by performing a more systematic analysis of key drug- and
pathogen-specific factors that could influence optimal CS-based
treatment scenarios. In addition, we incorporated mutations as
random events to capture the stochastic nature of resistance
evolution, which is overlooked when using purely deterministic
models. Our mathematical model was designed to facilitate the
identification of the primary factors driving the success or failure
of antibiotic treatments in a general setting, and not for specific
antibiotics and/or pathogens. We thereby did not consider factors
that could further contribute to treatment outcomes for specific
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pathogens or antibiotics. We did not consider that more complex
evolutionary mutational trajectories can occur with associated
complex patterns of changes in antibiotic sensitivity and MIC35,
which are not easily definable to apply to antibiotic treatment in
general. Other factors not considered include local antibiotic
tissue concentrations36,37, pharmacokinetic drug–drug interac-
tions or the contribution of the immune system. We expect that
such factors will not affect the specific subpopulations studied in
different ways and therefore will not have a great impact on the
general findings derived in this analysis.

In this analysis we assumed independent additive drug effects,
thus excluding the possibility of pharmacodynamic drug–drug
interactions between antibiotics, e.g., synergy or antagonism38.
Combined drug effects can furthermore be modelled according to
different null interaction assumption, including: (i) dependence
of drug effects through a shared mechanism of action (Loewe
additivity)38,39, (ii) independent drug effects with a shared max-
imum drug effect (Bliss independence)40, or (iii) fully indepen-
dent additive drug effects38 as implemented in this paper. The
choice of null interaction model, or the presence of drug
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interactions (synergy, antagonism) may influence treatment
outcomes in particular for simultaneous treatment schedules.
Although an analysis of the effect of various possible drug
interactions was beyond the scope of this analysis, we do expect
this will be an important factor to consider when designing CS-
based treatment for specific antibiotic combinations, where spe-
cific pharmacodynamic drug interactions can be explicitly
incorporated.

The developed modelling framework is applicable for the
design of clinical treatment strategies for specific antibiotic agents
and pathogens, where the model can be further expanded with
additional pathogen-, drug-, and patient-specific characteristics41,
derived from separate experimental studies. In addition, pub-
lished clinical population PK models for specific
antibiotics42,43 can be incorporated, which include inter-
individual variability or target site concentrations at the site of
infection. This would allow development of tailored CS-based
dosing regimens for specific antibiotics and pathogens. We did
not evaluate how the presence of collateral resistance (CR) could
impact treatment efficacy. Although such scenarios are beyond
the scope of the current study, the flexibility of our developed
framework allows for the incorporation of CR, and could thus
serve as a tool to investigate how CR impacts treatment efficacy.
Furthermore, cellular hysteresis, where non-genetic CS-like
responses have been observed, may be another direction for
which our modelling framework could be extended29.

In this study, we demonstrate how a mathematical modelling
can address questions that are difficult to answer using an
experimental approach. We conclude that CS-based treatments
are likely to be able to contribute in the suppression of resistance.
However, the success of such treatment strategies will be
dependent on careful design of a dosing schedule, and requires
explicit consideration of pathogen- and drug-specific character-
istics. Our developed modelling framework delineates key factors
for the overall design of effective CS-informed treatments and can
be used to facilitating and help the design of treatments tailored
to specific pathogens and antibiotic combinations. Although well-
conserved CS effects remain a key requirement, we found that
reciprocal CS may not be a requirement to design such dosing
schedules, expanding the applicability of CS-based treatments.
Such CS-based treatments appear to be most relevant for anti-
biotics with a narrow-therapeutic window, which are also the
antibiotics where within-host emergence of resistance is most
likely to occur.

Methods
Model framework. A differential-equation based model, consisting of components
accounting for antibiotic PK and PD, and associated bacterial population
dynamics, was developed to study the impact of differences in pathogen- and drug-
specific characteristics for different treatment strategies using two antibiotics,
hereafter referred to as drug A (DA) and drug B (DB). As a foundation for our
model development, we used a deterministic PK-PD model developed by Udekwu
and Weiss21, which explores the impact of different multi-drug treatments on time
to resistance development in the presence of CS. We advanced the model by
incorporating mutations as random events to capture the stochasticity of resistance
evolution. We integrated the different model components into a framework that
allowed us to simulate antibiotic multi-drug treatments while altering drug- and
pathogen-specific factors as a strategy to disentangle their impacts on resistance
development.

Pharmacokinetics. A mono-exponential PK model was defined for both drugs Di,
where i= {A,B}, as follows:

dADi

dt
¼ �ke;Di

´ADi
ð1Þ

thalf ;Di
¼ lnð2Þ

ke;Di

ð2Þ

CDi
¼ ADi

VDi

ð3Þ

where Eq. (1) describes the change of the amount of Di in plasma over time after
intravenous administration, ke;ABi

is the elimination rate of Di, which can also be
expressed as a half-life (thalf ;Di

) (Eq. (2)). The unbound plasma concentration (CDi
),

which is the assumed driver of the antibiotic effect, is calculated using the VDi
, the

distribution volume of Di with the assumption of negligible protein binding (Eq.
(3)).

Bacterial subpopulations. A model for antibiotic sensitive and resistant sub-
populations was defined, comprising a four-state stochastic hybrid ordinary
differential-equation (ODE) model, where each state represents a bacterial sub-
population with different antibiotic susceptibility towards DA and DB.

The model included an antibiotic sensitive bacterial subpopulation (WT) (Eq. (4)),
one mutant subpopulation resistant to DA but sensitive to DB (RA) (Eq. (5)), one
mutant subpopulation sensitive to DA but resistant to DB (RB) (Eq. (6)), and one
double mutant subpopulation resistant to both DA and DB (RAB) (Eq. (7)). The initial
bacterial population was assumed to be homogeneous and in the sensitive WT state
unless stated otherwise.

dWT
dt

¼ WT´ kG;WT ´ED;WT � kWT;RA
� kWT;RB

ð4Þ

dRA

dt
¼ RA ´ kG;RA

´ED;RA
þ kWT;RA

� kRA ;RAB
ð5Þ

dRB

dt
¼ RB ´ kG;RB

´ ED;RB
þ kWT;RB

� kRB ;RAB
ð6Þ

dRAB

dt
¼ RAB ´ kG;RAB

´ ED;RAB
þ kRA ;RAB

þ kRB ;RAB
ð7Þ

The above equations (Eqs. (4)–(7)) describe the subpopulation-specific rate of
change for bacterial density, which is dependent on the bacterial density of
subpopulation z, the subpopulation-specific net growth (kG,z), the drug effect
(ED,z), and mutation transition(s) (kz,M), if present.

Resistance mutation. Resistance evolution was included as stochastic mutation
process. This process was modelled using a binomial distribution B with a mutation
probability equal to the mutation rate (μ). The number of bacteria mutated per
time step T (kz;M) depended on the number of bacteria available for mutation
(nz,T), i.e., the bacterial subpopulation density of subpopulation z multiplied by the
infection volume V, at time T (Eq. (8)). Double resistant mutants evolved through
two mutation steps.

kz;M ¼ Bðnz;T ; μÞ
V

ð8Þ
Pharmacodynamic effects. Drug effects on bacterial subpopulations (Eqs. (4)–(7))
were assumed to be additive and the total drug effect for each subpopulation z
(ED,z) was implemented as follows (Eq. (9)):

ED;z ¼ 1� ðEDA ;z
þ EDB ;z

Þ ð9Þ
Here, antibiotic-mediated effects were implemented according to a PD model

developed by Regoes et al.16, where the effect of the ith antibiotic on bacterial
subpopulation z (EDi ;z

) was related to the unbound drug concentration (CD;i)
according to Eq. (10).

EDi ;z
¼

1� Gmin;Di
= kGmax;z

� �
´ CD;i

MICDi ;z

� �HillDi

CDi
MICDi ;z

� �HillDi � Gmin;Di
kGmax;z

ð10Þ

where Gmin;Di
represents the maximal killing effect for the Di, kGmax;z is the

subpopulation-specific maximal growth rate, HillABi
is the shape factor of the

concentration-effect relationship, and MICDi ;z
is the subpopulation-specific MIC of

Di. This multi-parameter model allows for the description of the concentration-
effect relationship of different shapes in relation to the subpopulation-specific MIC.

Sensitive bacteria were defined as having a MIC of 1 mg/L (MICWT) and
resistant as 10 mg/L (MICR). Because the antibiotic concentrations are expressed as
folds times MICWT, the absolute value of MICWT is arbitrary. However, the ratio
between MICWT and MICR is of relevance. A tenfold increase was chosen to
represent a significant increase for a biologically plausible scenario. Resistance-
related CS effects were included on the two single resistant mutants (RA and RB),
and were implemented as a proportional reduction (CSA and CSB) of the MIC of
the sensitive wild-type bacteria (MICWT). The double resistant mutant (RAB) was
fully resistant (MIC=MICR) to both antibiotic A and B, and did not have any
collateral effects. The subpopulation- and antibiotic-specific MICs are stated below:

MICDA ;WT ¼ MICWT andMICDB ;WT ¼ MICWT
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MICDA ;RA
¼ MICR andMICDB ;RA

¼ MICWT ´CSB

MICDA ;RB
¼ MICWT ´CSA andMICDB ;RB

¼ MICR

MICDA ;RAB
¼ MICR andMICDB ;RAB

¼ MICR

Growth rates and fitness effects. The maximal net growth rate (kGmax) represents the
maximal net growth of the wild-type bacteria in the exponential growth phase. We
considered resistance-associated fitness costs for the different mutant subpopula-
tions. The fitness cost was incorporated using the factor Ffit, which introduced a
fractional reduction of kGmax for each resistance mutation. Thus, each sub-
population is associated with a specific maximal net growth rate (kGmax,z), deter-
mined by the subpopulation-specific fitness, and was implemented according to Eq.
(11).

kGmax;z ¼ kGmax ´ F
Nz
fit ð11Þ

where FNz
fit is the fitness cost factor per mutation, and Nz is the subpopulation-

specific number of mutations (Nz= 0, 1, or 2).
The subpopulation-specific net growth in the absence of antibiotic (kG,z) was

implemented according to Eq. (12).

kG;z ¼ kGmax;z ´ 1�WTþ RA þ RB þ RAB

Bmax

� �
ð12Þ

where Bmax is the systems maximum carrying capacity, and WT, RA, RB, RAB
represent the bacterial densities of the four different subpopulations, respectively.

Pathogen- and infection-specific parameters. The maximal growth rate (kGmax) of
the hypothetical pathogen was 0.7 h−1, thus representing a doubling time of 1 h. The
infection-specific parameters were chosen to represent a human bacteraemia, thus a
typical human blood volume of 5 L was used as the infection site volume44. An initial
bacterial density of 104 colony forming units (CFU)/mL was used to represent an early
stage of an established infection45. A system carrying capacity limitation (Bmax) of
108 CFU/mL45 was implemented according to Eq. (12). When the maximum carrying
capacity is reached, the net growth of the total bacterial population is zero, resulting in
stationary phase. During this phase, bacterial replication continues but is offset by
bacterial death at the same rate, thereby still allowing for resistance mutations to occur.
Resistance mutation rates of 10−6 and 10−9 mutations/base pair/hour were chosen to
represent a high and a moderate mutation rate scenario, respectively46.

Drug-specific parameters. The two hypothetical antibiotics used for the simulations
(DA and DB) have identical one-compartmental PK with distribution volumes of one
litre, 5-h half-lives, and no protein binding. Their half-lives were selected to represent
antibiotics with clinically relevant short half-lives, thereby rapidly reaching steady-state
concentrations with minimal accumulation. The drugs were administrated as intrave-
nous bolus doses twice daily over a treatment duration of two weeks. Several different
dosing regimens were simulated including monotherapy, sequential non-repetitive
dosing, one- and three-days repeated cycling regimens, and simultaneous dosing. Here,
sequential non-repetitive dosing represents a multi-drug treatment using DA for the first
seven days and then switching to DB for the remaining seven days of the treatment. The
repeated cycling regimens represent multi-drug treatments starting with DA for the
duration of the cycling interval (i.e., one or three days), then switching to DB for the
same duration, and then back to DA, continuing the repeated cycling until the end of
treatment. For sequential and repeated cycling treatments DA was always used as the
starting drug. The doses used were obtained by calculating the required dose to achieve
appropriate average steady-state concentration (Css) relative to the MICWT. The lowest
dose (using 0.5 × MIC increments) that gave kill or stasis of the WT bacteria within the
24 h of treatment, but allowed for resistance development during monotherapy, was
selected for all dosing regimens except for the simultaneous dosing, for which the dose
for the individual antibiotics was reduced by half in order to allow for resistance
development. Four different PD types were included using different combinations of
representative parameter values of Hill (driver of antibiotic effect) and Gmin (type of
antibiotic effect). The driver of the antibiotic effect, which is reflected by the steepness of
the concentration-effect relationship (Hill), where shallow relationships are associated
with time-over-MIC-dependency (Hill= 0.5) and steep relationship with
concentration-dependency (Hill= 3). The type of antibiotic effects are commonly
divided into bacteriostatic (Gmin=−1) or bactericidal (Gmin=−3). The corresponding
PK-PD relationships of the four different antibiotic types are shown in Fig. 10.

Simulation scenarios. An initial set of dose-finding simulations revealed that
monotherapy required Css equal to 1.5mg/L (1.5 × MICWT) to achieve killing of the
WT while allowing for emergence of resistance in the absence of CS, regardless of the
drug type used (Supplementary Fig. 5). These dosing conditions allow us to evaluate the
effect of CS for the majority of the simulated treatments. However, for the treatments
where antibiotics were dosed simultaneously, half of the dose (Css 0.75mg/L) was used
in order to keep the total dose constant, and to allow for resistance emergence in the
absence of CS and comparable to non-simultaneous dosing regimens.

We used a systematic simulation strategy to study the impact of CS, fitness cost,
mutation rate, and initial subpopulation heterogeneity in antibiotic sensitivity on the

probability of resistance (PoR) development for different treatments. An overview of all
simulated scenarios can be found in Supplementary Table 2. We simulated treatments
using two same-type antibiotics (Gmin,A=Gmin,B and HillA=HillB) for scenarios
without CS as well as in the presence of one-directional and reciprocal CS in the
magnitude of 50% or 90% (2 or 10-fold) reduction of the sensitive MIC (Supplementary
Table 2, Scenario 1 and 2). For these scenarios the resistance was assumed to occur
without any fitness cost, thus allowing us to evaluated CS-specific effects on PoR. We
also simulated a set of treatment scenarios using two different antibiotic types in the
presence or absence of CS (Supplementary Table 2, Scenario 3). To assess the impact of
therapeutic window of antibiotics, as reflected by the fold-difference of steady-state
concentration (Css) to the MICWT, we simulated different dosing levels resulting in a
range of Css of 0.5–4 × MICWT (Supplementary Table 2, Scenario 4). In addition, we
simulated same-type treatment scenarios covering a wide range of fitness costs (10% to
50% fitness cost per mutation compared to the wild type) implemented as a growth rate
reduction (Supplementary Table 2, Scenario 5). In order to better understand the
interplay between CS and fitness cost we simulated these scenarios with and without
CS. We further investigated how low levels of pre-existing resistance (1%) towards
either DA or DB affected the PoR at the end of treatment for different dosing regimens
(Supplementary Table 2, Scenario 6). Finally, we examined the effect of increased
mutation rates on resistance development (Supplementary Table 2, Scenario 7).

Each simulated scenario was realized 500 times (n), thus representing 500 virtual
patients for which the within-patient resistance development was assessed. For each
scenario we evaluated different multi-drug treatments regimens, including within-
patient cycling and simultaneous administration. We note that most previously
conducted studies investigating the clinical utility of antibiotic cycling and mixing to
suppress AMR have evaluated stewardship strategies at a community level47–49, e.g.,
between patients within a hospital ward. However, community-level strategies are
conceptually different from the within-patient multi-drug treatment strategies we
investigate in this analysis. Therefore, the results we derive from our simulations are
not directly comparable to the findings from such epidemiological studies.

Evaluation metrics. We computed the probability of resistance (PoR), which was
defined as resistant bacteria reaching, or exceeding, the initial bacterial density of
104 CFU/mL at the end of treatment, for each subpopulation separately (Eq. (13))

PoRz ¼
nR;z
n

ð13Þ

where nR,z denotes the number of patients having resistant bacteria of sub-
population z at the end of treatment (Eq. (14)):

nR;z ¼ ∑
n

k¼1
1xz;k ≥ 104 cfu=mL ð14Þ

where 1 denotes the indicator function and xz,k denotes the bacterial density of
subpopulation z at the end of treatment of patient k.

We also calculated the PoR for the case where any, i.e., one or more, resistant
subpopulation(s) exceeded the resistance cut-off (RAny).

The standard error (SE) of the PoR was calculated according to Eq. (15).

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PoRð1� PoRÞ

n

r
ð15Þ

Software and model code. All analyses were conducted in R version 4.0.5, using
the ODE solver package RxODE (version 1.0.0-0)50,51. The associated model code
is available at https://github.com/vanhasseltlab/CS-PKPD)52.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data simulated in this study can be generated using the available scripts. The
simulated data can also be provided by the corresponding authors upon request without
restrictions.

Code availability
The model and associated code are available at https://github.com/vanhasseltlab/CS-
PKPD52 and in Supplementary Software 1.
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