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Highlights
HDTs present innovative treatment
strategies to combat against Mtb
infections. Key HDT mechanisms
include autophagy induction, modu-
lation of host epigenetics, and
modulation of cytokine- and lym-
phocyte-mediated response.

QSP modelling approaches may guide
development of HDTs, incorporating
complexity of drug–host–pathogen inter-
actions. Such models can be used to
identify new treatment targets, facilitate
translational predictions, design combi-
nation treatment strategies, and optimize
Host-directed therapies (HDTs) that modulate host–pathogen interactions offer
an innovative strategy to combat Mycobacterium tuberculosis (Mtb) infections.
When combined with tuberculosis (TB) antibiotics, HDTs could contribute to
improving treatment outcomes, reducing treatment duration, and preventing
resistance development. Translation of the interplay of host–pathogen interac-
tions leveraged by HDTs towards therapeutic outcomes in patients is challenging.
Quantitative understanding of the multifaceted nature of the host–pathogen inter-
actions is vital to rationally design HDT strategies. Here, we (i) provide an overview
of keyMtb host–pathogen interactions as basis for HDT strategies; and (ii) discuss
the components and utility of quantitative systems pharmacology (QSP) models to
informHDT strategies. QSPmodels can be used to identify and optimize treatment
targets, to facilitate preclinical to human translation, and to design combination
treatment strategies.
dose and dosing regimen.

QSP models for the design and evalua-
tions of HDTs should capture relevant
mechanistic details of host immune
response, pathogen dynamics, and
pharmacokinetic and pharmacody-
namic characteristics of HDTs.
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Host-directed therapies: leveraging the host immune system for treatment of TB
Mtb infections are associated with approximately 1.5–2 million deaths annually worldwide. Two key
challenges to successful TB treatment are long duration of treatment and emergence of drug-
resistant strains [3]. In the last decade, HDT strategies have received increasing attention [4–6] to en-
hance treatment outcomes, shorten treatment durations, and avoid resistance development. HDTs
target interactions between the host immune response and the Mtb pathogen, which reduces the
likelihood for Mtb to acquire resistance against HDTs. In addition, additive effects of adjunctive
HDT treatment with conventional antibiotics on bacterial elimination could help to shorten treat-
ment duration and therefore may avoid development of resistance to conventional antibiotics [7].

The host immune response to Mtb infection is reliant on the cumulative activities of various
defence mechanisms such asmacrophage activation, phagocytosis (see Glossary), autophagy,
antigen presentation, and cytokine and T lymphocyte production. Genotypic and phenotypic
changes in Mtb during infection leading to modulation of the host response allows its survival
and virulence in the host [8]. Mechanistic understanding of the multiscale nature of host–pathogen
interactions is essential to identify HDT targets, to design and develop new HDT drugs, and to
repurpose already marketed drugs as HDT strategy.

A major challenge in the discovery and development of HDTs for TB is the prediction of treatment
responses associated with specific pharmacological modulation of an immune-response-associated
target due to complex systems-level host–drug–pathogen interactions [4]. The translation of systems-
level responses to HDT strategies from preclinical models to patients is challenged by interspecies
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Glossary
AMPK–mTORpathway: pathway that
involves complex interplay between
various proteins and plays a key role in
autophagy regulation.
Autophagy: an intracellular process
involving the formation of a phagophore,
elongation of the phagophore,
autophagosome maturation, and fusion
with lysosomes for degradation of the
selected cellular material.
HMG-CoA reductase pathway:
pathway involved mainly in regulation of
cholesterol synthesis but also known to
be involved in regulation of autophagy
[1].
Phagocytosis: cellular process
involving engulfment of large particles,
including bacteria, into the cells.
Pharmacodynamics: describes the
concentration–effect–time profile of
drugs and is determined by drug
pharmacology and physiology of the
organism [2].
Pharmacokinetics: describes the
concentration–time profile of drugs and
is determined by absorption,
distribution, metabolism, and elimination
processes.
differences in immune responses to Mtb pathogen. QSP modelling can serve as a valuable tool
to identify relevant HDT targets, and to inform subsequent design of combination drug treatment
strategies and dosing schedules [9–11]. The utility of quantitative modelling to improve treatment
strategies for TB have been demonstrated for antibiotic therapies [11,12]. However, these
approaches have not yet been developed to design HDTs.

Here, we review high-potential host–pathogen interactions of relevance for HDTs.We then outline
how QSP modelling approaches can be used to predict optimal HDT strategies with a focus
on required model components and the integration with available data for application in target
selection, interspecies translation, and treatment optimisation.

Host–pathogen interactions as basis for HDT strategies
Several host–pathogen interactions of Mtb involved in its pathogenesis and immune system
evasion offer potential targets for design of HDTs [6] (Figure 1), and are of relevance to capture
in QSP modelling approaches.

Induction of autophagy
Autophagy plays an essential role in controlling Mtb infections and has been studied extensively
as potential HDT strategy for Mtb [6]. Multiple intertwined pathways affecting glucose and choles-
terol metabolism, such as the AMP-activated protein kinase (AMPK) and mammalian
target of rapamycin (mTOR) pathway and HMG-CoA reductase pathway, are involved in
regulation of autophagy (Figure 1). AMPK plays a key role in these pathways and therefore in
regulation of autophagy. As an evasion mechanism, Mtb inhibits phosphorylation of AMPK
protein and inhibits autophagy [13]. Apart from AMPK-mediated autophagy regulation, intracellu-
lar cholesterol is also involved in Mtb survival leading to inhibition of autophagosome maturation
and autophagosome–lysosome fusion [1]. Thus, autophagy induction through inhibition of mTOR
complex (mTORC)1 or by inhibition of HMG-CoA reductase represent a potential HDT strategy.

mTORC1 inhibitors
Metformin is the most evaluated mTORC1 inhibitor as potential HDT treatment for Mtb infections.
Metformin inhibited the growth of intracellular Mtb in vitro and in mice [13,14]. Multiple reports
suggest that metformin adjunctive therapy in diabetic TB patients improved therapy success
rate and lowered mortality rate [15,16]. Adjunctive everolimus, an mTOR inhibitor, treatment
with rifabutin-substituted standard TB therapy improved lung functions as measured by forced
expiratory volume when compared to a control group in a randomised clinical trial [17]. A recent
study identified protein kinase inhibitor ibrutinib as a potential mTORC1-mediated autophagy
inducer in a mouse study [18]. These results provide initial proof of concept and justifying further
evaluations of mTORC1 inhibitors in clinical trials.

HMG-CoA inhibitors
The HMG-CoA reductase pathway has been associated with intracellular cholesterol reduction
and autophagy induction. Therapy with HMG-CoA inhibitors, such as simvastatin, pravastatin,
and fluvastatin, as adjunctive therapy to conventional anti-TB drugs improved bacterial clearance
by the host and improved the efficacy of first-line TB drugs by promoting autophagy in macro-
phage cell cultures and in mice [19,20]. Several retrospective clinical studies have identified that
chronic use of statins reduced the risk of developing TB [21]. A population-based cohort analysis
of data from newly diagnosed TB patients recognised no significant difference in hazard ratio
between patients who were using statins in addition to standard TB treatment as compared to
patients who did not use statins [22]. As chronic use of statins leads to reduced risk of TB, it
may be hypothesised that factors such as drug penetration in lungs and drug affinity may play
294 Trends in Pharmacological Sciences, April 2022, Vol. 43, No. 4

CellPress logo


TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 1. Host–pathogen interactions as basis for host-directed therapy strategies for the treatment o
Mycobacterium tuberculosis (Mtb) infections. Initiation of the host innate immune response occurs shortly afte
inhalation of aerosols containing Mtb bacteria and Mtb implantation in macrophages. Both resident and activated
macrophages stimulate the release of proinflammatory cytokines, such as tumour necrosis factor (TNF)-α and interleukin
(IL)-1β, following phagocytosis and autophagy. Antigen-presenting cells (macrophages and dendritic cells) that drain into
local lymph nodes activate CD4+ and CD8+ T-cell-mediated adaptive immune responses. Antigen-presenting cells also
stimulate the release of IL-12, which helps recruit additional CD4+ T cells. CD4+ T cells secrete interferon (IFN)-γ tha
stimulates macrophage activation, IL-2, TNF-α, and IL-10 that helps balance the proinflammatory response by
deactivation of macrophages. CD8+ cells have cytotoxic activities. CD4+ T-cell-secreted IL-2 drives further proliferation o
CD4+ as well as CD8+ T cells. Autophagic pathways start with parting of a section from endoplasmic reticulum, the
phagophore, followed by the elongation of phagophore with engulfment of Mtb, autophagosome formation and
maturation, and fusion of the autophagosome with lysosomes. Mtb activates mammalian target of rapamycin complex

(Figure legend continued at the bottom of the next page.
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a key role in determining its effectiveness as HDT. Overall, these results highlight the potential of
targeting the HMG-CoA reductase pathway as autophagy induction strategy.

Regulation of host epigenetics
Infection withMtb is associatedwith alterations of some gene functions important for the ensuring
immune response. Two key pathways known to be involved in Mtb-induced host epigenetic
alterations are histone deacetylase (HDAC)1 pathway and TLR3–BMP–miR27a pathway; both
of which can be pharmacologically exploited [23,24].

HDAC inhibitors
Infection with Mtb leads to upregulation of HDAC1, which leads to suppression of IL-12B gene
expression and suppression of T cell immunity (Figure 1). Additionally, HDAC1 is known to
modulate autophagy-associated genes [23]. HDAC inhibitors, such as trichostatin A, TMP195,
and TMP269, reduced bacterial growth in macrophage cell cultures. Vorinostat, an HDAC
inhibitor, promotes immune response in macrophage cell cultures [25]. In zebrafish embryos
infected with Mycobacterium marinum (Mm), HDAC inhibition significantly reduces microbial
burden [23]. HDAC inhibition significantly inhibits Mtb growth and shows increased production
of key cytokines in mice [26]. These results highlight the potential of exploiting HDAC inhibition
as HDT strategy.

Abl tyrosine kinase (ATK) inhibitors
Protein ATK is involved in entry and survival of Mtb within macrophages through the TLR3–BMP–
miR27a pathway. ATK also inhibits expression of vATPase pump-relevant genes, and thus
inhibits acidification of autolysosomes (Figure 1). Pharmacological inhibition of ATK using imatinib
improves containment of Mtb within macrophages, induces autophagy, and decreases bacterial
load in human macrophage cell cultures and in mice [6,24]. Imatinib also leads to decreased
bacterial load in macrophage culture and in mice infected with rifampin-resistant Mm [27]. A
clinical study assessing effects of imatinib alone and in combination with conventional anti-TB
drugs in drug-resistant and HIV coinfected TB patients is ongoing [28]. These data suggest
that imatinib may prove effective as HDT towards Mtb.

Modulation of cytokine response
The kinetics of the key cytokines, such as interferon (IFN)-γ, tumour necrosis (TNF)-α, interleukin
(IL)-1β, IL-10, IL-4, IL-12, and IL-2, duringMtb infections have been well studied in humans and in
mice. IFN-γ is one of the most important players to the host immune response and its main role
is activation of macrophages (Figure 1). Both activated and resident macrophages produce
proinflammatory cytokines TNF-α and IL-1β that possess microbicidal properties against
Mtb; however, activated macrophage-mediated production is more efficient [29]. Excessive
production of proinflammatory cytokines, however, can lead to tissue damage in vivo [30].
Anti-inflammatory cytokines IL-10 and IL-4 are also induced upon macrophage phagocytosis
and balance proinflammatory cytokines by macrophage deactivation [30]. Excessive production
of anti-inflammatory cytokines may result in limiting the immune-mediated microbicidal activities
[31]. Thus, the fine balance between the pro- and anti-inflammatory cytokines may determine
the overall outcome of the Mtb infection.
(mTORC)1 and thus inhibits autophagy, while mTORC1 activates aerobic glycolysis. Intracellular cholesterol inhibits LC3, Ca2+,
and LAMP3, and thus inhibits autophagy-mediatedMtb killing.Mtb activates the histone deacetylase (HDAC) pathway and thus
downregulates various genes responsible for innate and adaptive immune response. Potential host-directed therapy strategies
are presented in green text.
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Adjunctive treatment with IFN-γ has been evaluated in various clinical studies; however, different
patient conditions, routes of administration, and dosing regimens resulted in varying outcomes
[31]. Adjunctive treatment with aerosolized IFN-γ showed benefits in reducing cavitary lesions
and induced negative sputum conversion in TB patients in clinical studies [32]. Thus, modulation
of cytokine response may be a useful HDT strategy.

Enhancing T-cell mediated host response
The innate immune reaction plays an important role in the initiation of adaptive immune response
by antigen presentation and cytokines production. A few weeks after the initial infection, antigen-
presenting cells (APCs) that drain into regional lymph nodes initiate adaptive T-lymphocyte-
mediated immune response. Upon antigen presentation, the APCs via major histocompatibility
molecules (MHC)-I and II prime CD8+ and CD4+ T cells to initiate an adaptive immune response.
Both activated CD4+ and CD8+ T cells secrete IFN-γ, IL-2, IL-17A, and IL-10. Mature dendritic
cells secrete IL-12p70, which helps increase recruitment of additional CD4+ T cells. IL-2 plays
a role in further proliferation of T cells. CD8+ cells have direct microbicidal capabilities through
perforin, granzymes, and granulysin, or induce apoptosis through Fas/Fas ligand interaction.
Adjunctive cytokine supplementation with IL-12 and IL-2 have been evaluated in clinical studies
but did not result in significant benefits. However, recombinant human IL-2 supplementation
showed significant improvements in negative sputum culture conversion rates and in enhanced
X-ray resolution in drug-resistant TB patients. [33] Therefore, the use of recombinant IL-2 supple-
mentation as HDT strategy for TB should be further evaluated.

Design of HDTs using QSP modelling
The overall outcome of Mtb disease and treatment is reliant on the integrated results of the
molecular and cellular events, and their reflection at tissue, organ, and host level dynamics occur-
ring at different time scales. As such, it can be challenging to predict patient responses to different
HDT strategies. Species differences in immune response characteristics make it more challeng-
ing to translate the results from preclinical studies to clinical scenarios. Additionally, determination
of the effects of treatments and disease progression in specific patient populations, can be
challenging, that is, in patients with weakened immune response or other conditions, or patients
with specific genotypes known to affect certain pharmacology. QSP modelling can address
these hurdles through quantitative integration of host–pathogen interaction mechanisms with
pharmacokinetics (PK) and pharmacodynamics (PD) aspects of HDTs, making it a relevant
tool to guide drug discovery and development of HDTs. Development of QSP models for HDTs
against TB is the requirement for large amount of mechanistic quantitative data to parametrise
the model, which may concern biological system-specific data relating to immunodynamics
and pathogen dynamics, as well as drug-specific model related to pharmacokinetics and
drug–target interactions. Importantly, once defined, a QSP framework for specific HDT mecha-
nisms is developed, it can be applied as a platform model towards different investigational
therapeutic agents. Selection of appropriate experimental approaches are important to provide
quantitative understanding about components of drug–host–pathogen interactions. Here, we
discuss key experimental models that can be of relevance for characterization of HDTs using
QSP modelling. Then, we discuss three main components of the QSP framework to evaluate
HDTs for Mtb infection: (i) drug PK models; (ii) host immune response models; and (iii) pathogen
dynamic models (Figure 2). Lastly, we discuss applications of these models (Figure 3).

Experimental approaches to facilitate parameterisation of the QSP models
Human-derived macrophage and peripheral blood mononuclear cell cultures are extensively
used to screen for the antibiotics but also identify compounds with HDT potential [14,34,35].
The in vitro hollow fibre infection model (HFIM) is commonly used to study the direct effects of
Trends in Pharmacological Sciences, April 2022, Vol. 43, No. 4 297
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Figure 2. Components of the conceptual quantitative systems pharmacology framework to assess host-
directed therapies (HDTs) for tuberculosis. A quantitative systems pharmacology (QSP) framework for HDTs should
contain a combination of model components for pharmacokinetics (PK) of the drugs, host immune response, and
pathogen dynamics, including their interactions. Classical antibiotics and HDTs act by modulating pathogen dynamics and
host immune response, respectively. Immune-mediated pathogen killing is dependent on interplay between the host
immune response and pathogen evasion mechanisms, that is, host–pathogen interactions. Key considerations for each
model components are listed in the green box. Types of studies and data that can be used to inform each model
components are presented in the purple box. Abbreviations: PBPK, physiologically based PK.

Trends in Pharmacological Sciences
antibiotics agents on Mtb, and readily allows to include cocultures with macrophages. In HFIM,
Mtb is cultured in a closed chemostat system with continuous flow of medium, while it allows
simulation of concentration–time profiles of underlying PK/PD relationships of antibiotics and
HDTs [36]. Several advanced cell culture systems, such as 3D cell cultures, organoids [37],
and lung-on-chip [38], have been increasingly used to study host–pathogen interactions. While
these approaches are attractive for purposes of quantitative characterisation of key mechanisms
and phenotypic response profiles to be implemented in QSP models, these systems remain a
simplified system that does not include all aspects related to the host immune response.

Adult zebrafish have gained increasing attention as it possess an innate immune system that is
highly similar to that of mammals [39,40]. Zebrafish embryos are of interest due to their optical
transparency and thus allowing the use of advanced imaging methods. Infection of zebrafish
298 Trends in Pharmacological Sciences, April 2022, Vol. 43, No. 4

Image of Figure 2
CellPress logo


TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 3. Applications of the conceptual quantitative systems pharmacology framework to assess host-
directed therapies (HDTs) for tuberculosis (TB). Quantitative systems pharmacology (QSP) models can guide TB
HDT drug discovery and development at various phases depending on the model attributes. For example, a model
developed based on experimental in vitro and/or in vivo data can be useful to study various host–pathogen interactions, to
screen for optimal HDT targets, and to guide in vitro and/or in vivo data experimental designs. Upon addition of various
translational factors and inter-individual variability components, the models can be useful to design optimal clinical studies,
to identify optimal combination strategies, and to individualise treatments.

Trends in Pharmacological Sciences
with various mycobacteria leads to formation of granuloma structures that are highly similar to
those observed in human TB patients; therefore, it has been a successful model to study the
progression of TB and the effects of drug treatment [41]. Pharmacological screening of drugs
to treat mycobacterial infection at a high throughput level is also possible [42]. Knockdown and
overexpression experiments in zebrafish combined with translational QSPmodelling would espe-
cially provide insights into contribution of certain component to overall immune response and
anti-TB effects [43]. Mice, rabbits, and guinea pigs, are commonly used as infection models for
Mtb [39]. Even though these models incorporate a full immune system, differences between
the human immune response remain and lead to translational challenges [11]. Nonhuman
primates (NHPs) have been widely used in immunology and vaccine research. NHPs infected
with Mtb are of interest to generate HDT-relevant data due to their similarities to humans in
basic physiology, immunology, and disease pathology. However, the use of these models has
been limited in TB treatment research due to the requirements of scientific and financial resources
as well as safety issues due to the highly infectious and contagious nature of Mtb [44].

Overall, data collected from a combination of various experimental models, such as in vitro,
zebrafish, and mice, can be used to parameterise QSP models. QSP models can link the results
from various experimental infection models, enabling predictions in humans.
Trends in Pharmacological Sciences, April 2022, Vol. 43, No. 4 299
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Components of the QSP modelling framework
A QSP framework for HDTs should contain a combination of model components for PK of the drugs,
host immune response, and pathogen dynamics, including their interactions (Figure 2). Depending on
the type of HDT drug studied, QSP models may be parameterised and adapted in specific ways, for
example, to capture the drug-specific parameters to induce specific immune system effects.

Pharmacokinetics
Consideration of drug concentration–effect relationships, and therefore PK, is of essential value for
design of HDT strategies. Physiologically based PK (PBPK) models describe the concentration
profiles in specific tissues of interest and are informed by both drug- and system-specific
parameters. PBPK models are of relevance to scale PK between preclinical species and humans in
a mechanistic fashion. For TB, PBPK models describing lung exposure are of specific relevance. In
the clinical phase, quantifying interpatient variability in PK is important. Here, population PK models
are of relevance, which capture interindividual variation in underlying parameters that can be explained
by specific patient-specific covariates [45]. It is furthermore helpful that because many HDTs involve
repurposed drugs, often PK models are available already to characterize their PK [46,47].

Immunodynamics
Models describing the key immune response components, such as dynamics of macrophage
counts, cytokines, and CD4+ and CD8+ lymphocytes are essential for QSP models to study
HDTs. Systems biology models describing the host–Mtb interactions within the lungs [48]
have been previously developed, and later linked with lymphatics [49] and blood circulations
[50]. The states included in these models were resting, activated, and infected macrophages,
cytokines, such as IFN-γ, IL-10, and IL-12, dendritic cells, CD4+ lymphocytes, and intra- and
extracellular Mtb. The key feature of this model was the contributions of various immune compo-
nents on intra- and extracellular Mtb. The above-developed model was later expanded to include
CD8+ cell dynamics in lungs [51]. The parameters in these models were identified from published
human-derived or NHP experiments or model fitting to experimental data. These models can be
expanded to include key drug targets involved in Mtb HDTs and their downstream effects on
functional immune response changes and the quantitative interaction with Mtb.

There are currently no mathematical models available in the literature describing HDT-relevant
pathways, such as autophagy in Mtb infections; however, components and parameter estimates
from single cell systems biology models [52] can be adapted and extended using experimental
data. For example, an HDT model containing key biological features of autophagy [52], including
HDAC1-related components (Figure 1), may be developed. The model parameters can be
informed using prior data available in the literature [52] and data from in vitro experiments [23].
The model may describe dynamics of the phagocytic cells and zebrafish infection with Mm
load overtime in HDAC1-inhibitor-exposed macrophage cell cultures as compared to controls
to estimate the parameters relevant to the effect of HDAC1. The simulations from the models
may be compared with the experimental outcomes; preferably from different experimental condi-
tions than the original experiments used for parameter estimation. This allows validation of
the model structure and parameter estimates. In the above example, the simulations may
be validated against data from zebrafish exposed to HDAC1 inhibitors (at various HDAC1 levels)
experiments [23]. If multiple targets are affected by certain drugs, that is, ATK inhibitors (Figure 1),
all relevant mechanisms must be captured in such models.

Pathogen dynamics
Models for the dynamics of pathogens include the effect of antibiotic drug on the growth and
elimination of Mtb and emergence of treatment resistance. In vitro and in vivo infection studies
300 Trends in Pharmacological Sciences, April 2022, Vol. 43, No. 4
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have enabled our understanding of parameters of Mtb growth rates [12], bactericidal and bacte-
riostatic effects of conventional anti-TB drugs [36], and resistance rates of bacteria [12]. The
incorporation of immune cell effects on pathogen killing is a key required step to study the effects
of HDTs on Mtb treatment. Published host–Mtb interaction models [49] can be updated to
include contributions of key HDT components on pathogen killing, as well as pathogen evasion
mechanisms. For example, an autophagy model may contain the quantitative relationship
between bacterial load, mTOR, and autophagy. This will allow evaluations and predictions of
various mTOR inhibitors on Mtb clearance by autophagy.

Applications of the QSP modelling framework
QSP modelling has successfully influenced decision making at different stages, starting from
discovery to late phase in various therapeutic areas [53], and offered potential for the challenges
faced in translation and design of HDT strategies against Mtb [66] (Figure 3).

Target identification, drug discovery, and drug repurposing
QSP models integrate various host–pathogen interactions and drug PK/PD components; there-
fore, they can readily provide assessment of target engagement upon stimulation or inhibition of
certain targets at various doses and affinities. This allows evaluations of the iterative process of
hypotheses generation, designing new experiments, hypotheses validation, and/or generation
of new hypotheses. This approach can be applied to evaluate knownHDT targets andmolecules,
to discover new HDT targets, and to discover new HDT molecules. With advances in technolo-
gies, applications of combining quantitative modelling and machine learning approaches are
being evaluated to screen new virtual drug compounds with optimal characteristics [54]. For
example, different ADME properties for a set of virtual compounds were used in a PBPK model
combined with tumour dynamics model to simulate tumour size. Machine learning algorithms
were then applied to the simulated dataset to identify the combination of ideal drug properties
to provide desired outcome. This information may then be applied for lead prioritisation [54].
Similar approaches can be applied to repurpose or reposition already marketed drugs using
large scale drug–target interactions data [55]. Advanced target screening techniques, that is,
CRISPR-Cas9, can be also considered in combination with QSP models for HDT drug discovery
and development in future.

Translational predictions
With increased complexity and innovation in design of new drugs within the last two decades,
mechanistic models are increasingly being applied to inform translation of the results across
different experimental conditions and species. The systematic incorporation of system-specific
parameters not only for various species, but also incorporation of differences between in vitro
systems and in vivo models, is crucial to enable translation towards clinical HDT treatment
designs [39]. In some cases, that is, for scaling from HFIM to humans, such scaling is well studied
[36], while further studies are needed for the host’s immune response components [56]. Consolidating
immune-relevant differences between preclinical models and humans [56] may be challenging and
resource intensive, as there may be varying strains of models used across different experiments
depending on the objectives of the experiments. The shown evolutionary conservation of the meta-
bolic responses to mycobacterial infection in human patients, mice, and zebrafish shows that basic
disease symptoms such as wasting syndrome are not dependent on species or varying strains
[57]. Gene expression analysis data across speciesmay be used to inform parameters of expressions
of genes responsible for certain immune functions [58]. Such expression data studies can be used to
predict metabolism using whole-genome metabolic network theoretical modelling approach in
various organisms [59]. Factors such as severity of infection and sensitivity of drugs to bacterial
strains (i.e., Mtb vs Mm) may also be applied within the QSP framework.
Trends in Pharmacological Sciences, April 2022, Vol. 43, No. 4 301
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Outstanding questions
How can we best leverage advanced
quantitative methods, such as QSP
modelling, bioinformatics, and artificial
intelligence, including machine learning,
in TB research, drug discovery, and
development?

Can we identify opportunities for
collaboration amongst researchers
to enable collection and sharing of
relevant data for development of QSP
models to guide design of HDTs for
treatment of TB?

Can we apply quantitative approaches
to guide design of experiments and
clinical studies to collect the large body
of data required to validate QSPmodels
to further guide and personalize treat-
ment of TB patients?

Can we utilize QSP models combined
with patient-level data, including
multiomics data, to understand factors
affecting heterogeneity of response to
HDTs amongst TB patients?
Variability and precision medicine
The presentation and severity of TB is variable among patients, and thus treatment responses,
especially to HDTs, are variable. Many factors such as age, sex, genotypes, and comorbid
conditions play a role in determining the outcome of the disease and treatment. PopPK models
have evaluated these factors’ impact on variability in PK/PD of antibiotics [60], and can be
included in QSP simulations. For example, known differences in PK and immune-response
components for HIV coinfected TB patients may be incorporated in the framework, enabling
extrapolation of results from studies in TB patients to HIV–TB patients [61]. In addition, consid-
ering immune-response relevant endotypes is important [62,63]. Technological advances
within the last century enabled generation of large-scale omics data. These data may enable
us to better understand the interindividual variations associated with the parameters of the
QSP models. For example, parameters, together with interindividual variations, describing
the expression of baseline state of immune response components within lymph nodes and
blood were estimated using data from a flow cytometry analysis of blood leukocytes and
genome-wide DNA genotyping from humans [64]. Gene expression analysis of omics datasets
from TB patients enabled stratification of the patients into two groups. One of the two groups
was characterised by increased gene activity score for inflammatory response and decreased
gene activity score for metabolism-relevant pathways, and patients in this group showed
slower time to negative TB culture conversion and poor clinical outcome [62,63]. Similarly,
gene expression data can be used to include variability in the QSP models and inform outcome
of certain HDT treatment.

Selection of optimal dosing regimens and combination therapies
QSP models are well-suited to efficiently evaluate combination therapies and dosing schedules,
which is important to combination treatment strategies of HDTs and classical antibiotics against
Mtb. In the field of immuno-oncology, such QSP models have been widely applied to design
optimal combination treatments of immune-targeting agents [65]. In the TB disease space, a
QSP modelling approach for conventional antibiotic Mtb therapy has recently been applied to
predict patient outcome with intensive dosing regimen and to explore shorter treatment duration
scenarios [12].

Concluding remarks and future perspectives
HDTs offer a unique treatment strategy to combat Mtb infections but are challenged by
complex and multiscale interactions between drug, host, and pathogen. Several key
mechanisms are of interest to be exploited as HDTs but are facing challenges in translation
towards clinically effective treatment strategies. The combined use of innovative experi-
mental infection models with QSP modelling approaches can address these translational
challenges and accelerate the design of novel HDT (combination) treatment strategies to-
wards patients. QSP models supporting HDT design include model components describ-
ing biological system specific host-specific immunodynamics, pathogen dynamics, and
drug-specific models for PK and PK/PD for compounds of interest. Design of QSP models
for HDTs relies on the availability of detailed mechanistic knowledge of relevant immuno-
logical and pharmacological aspects related to drug–host–pathogen interactions of Mtb
infection, with significant knowledge gaps still present. Future work should focus on filling
these knowledge gaps, which will require close and prospective coordination with such
investigational efforts ensuring the correct data will be collected (see Outstanding
questions).
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