12 research outputs found

    The Final (Oral Ebola) Vaccine Trial on Captive Chimpanzees?

    Get PDF
    Could new oral vaccine technologies protect endangered wildlife against a rising tide of infectious disease? We used captive chimpanzees to test oral delivery of a rabies virus (RABV) vectored vaccine against Ebola virus (EBOV), a major threat to wild chimpanzees and gorillas. EBOV GP and RABV GP-specific antibody titers increased exponentially during the trial, with rates of increase for six orally vaccinated chimpanzees very similar to four intramuscularly vaccinated controls. Chimpanzee sera also showed robust neutralizing activity against RABV and pseudo-typed EBOV. Vaccination did not induce serious health complications. Blood chemistry, hematologic, and body mass correlates of psychological stress suggested that, although sedation induced acute stress, experimental housing conditions did not induce traumatic levels of chronic stress. Acute behavioral and physiological responses to sedation were strongly correlated with immune responses to vaccination. These results suggest that oral vaccination holds great promise as a tool for the conservation of apes and other endangered tropical wildlife. They also imply that vaccine and drug trials on other captive species need to better account for the effects of stress on immune response

    Relative susceptibility of beef and dairy calves to infection by bovine leukemia virus via tabanid (Diptera: Tabanidae) feeding.

    No full text
    Differences in susceptibility of beef (mixed breeds) and dairy (Holstein) calves to infection by bovine leukemia virus (BLV) were compared. Transmission was accomplished by interrupted feeding of horse flies, Tabanus fuscicostatus Hine, on a donor cow exhibiting persistent lymphocytosis. Flies were transferred individually from the donor cow to each of 11 beef and 10 dairy calves. Transmission of BLV was accomplished with groups of 50 and 250 flies for beef calves and 75 and 250 for dairy calves. These findings indicate that susceptibility of beef and dairy calves to transmission of BLV by tabanids is equivalent and that BLV prevalence differences previously observed among cattle breeds may be caused by management practices

    The semiochemically mediated interactions between bacteria and insects

    Full text link
    In natural environment, semiochemicals are involved in many interactions between the different trophic levels involving insects, plants and hosts for parasitoids or prey for predators. These volatile compounds act as messengers within or between insect species, inducing particular behaviours such as the localisation of a source of food, the orientation to an adequate oviposition site, the selection of a suitable breeding site and the localisation of hosts or prey. In this sense, bacteria have been shown to play an important role in the production of volatile compounds which ones act as semiochemicals. This review, focusing on the semiochemically-mediated interactions between bacteria and insects, highlights that bacterial semiochemicals act as important messengers for insects. Indeed, in most of the studies reported here, insects respond to specific volatiles emitted by specific bacteria hosted by the insect itself (gut, mouthparts, etc.) or present in the natural environment where the insect evolves. Particularly, bacteria from the families Enterobacteriaceae, Pseudomonaceae and Bacillaceae are involved in many interactions with insects. Because semiochemicals naturally produced by bacteria could be a very interesting option for pest management, advances in this field are discussed in the context of biological control against insect pests.Solaphi

    Transmission of Clonal Hepatitis C Virus Genomes Reveals the Dominant but Transitory Role of CD8+ T Cells in Early Viral Evolution ▿ †

    No full text
    The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8+ T cells is a dominant force driving early amino acid replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8+ T cell responses combined with sequencing of recovered virus at frequent intervals revealed that most acute-phase nonsynonymous mutations were clustered in class I epitopes and appeared much earlier than those in the remainder of the HCV genome. Moreover, the ratio of nonsynonymous to synonymous mutations, a measure of positive selection pressure, was increased 50-fold in class I epitopes compared with the rest of the HCV genome. Finally, some mutation of the clonal H77C genome toward a genotype 1a consensus sequence considered most fit for replication was observed during the acute phase of infection, but the majority of these amino acid substitutions occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8+ T cells. This influence of immune pressure on viral evolution appears to subside as chronic infection is established and genetic drift becomes the dominant evolutionary force
    corecore