1,211 research outputs found
Modern mechanisms make manless Martian mission mobile: Spin-off spells stairclimbing self-sufficiency for earthbound handicapped
Concepts were developed for three wheel chairs from progressively improving designs of a proposed unmanned roving vehicle for the surface exploration of Mars; as a spin-off, a concept for a stair-climbing wheel chair was generated. The mechanisms employed in these are described. The Mars mission is envisioned using the booster rockets and aeroshell of the Viking missions
Electronic properties of ion-implanted yttria-stabilized zirconia
Ion implantation of iron and titanium has been applied to modify the surface properties of polycrystalline yttria-stabilized zirconia ((ZrO2)0.87(YO1.5)0.13 (YSZ)) discs in an attempt to prepare surfaces with a mixed conductivity and by this an enhanced surface oxygen exchange kinetics. Surface-sensitive spectroscopic techniques were applied to investigate the implanted layers as a function of different pretreatments such as oxidation, reduction and annealing. Depth profiles were recorded by Rutherford Backscattering Spectroscopy (RBS) and X-ray Photoelectron Spectroscopy (XPS) in combination with sputtering. Ion Scattering Spectroscopy (ISS) and XPS were used to investigate the surface composition and valency of implanted ions. Electronic properties like the band gap, the work function and the energy difference between the Fermi level and valence band edge (EF-EV) were obtained from Ultraviolet Photoelectron Spectroscopy (UPS) and Electron Energy Loss Spectroscopy (EELS). Overlayers of Fe2O3 or TiO2 are formed during oxidation of as-implanted samples. The Fe- and Ti-oxides could be reduced in hydrogen to the oxidation states Fe2+, Fe0 or Ti3+. Annealing of the samples leads to decreased surface concentrations of the implanted ions due to in-diffusion. At the surface of the annealed iron-implanted samples, Fe2+ and metallic Fe could be generated after further reduction whereas at the surface of the annealed Ti-implanted samples only Ti4+ was detectable.\u
Charter School Funding: Inequityâs Next Frontier
Of all the controversies swirling around the nationâs charter schools, none is more hotly contested than the debate over funding. Charter opponents charge that] these autonomous public schools are draining scarce resources from public school districts. Proponents, by contrast, complain that charter schools do not get their fair share of public education dollars
Multiplexed readout of kinetic inductance bolometer arrays
Kinetic inductance bolometer (KIB) technology is a candidate for passive
sub-millimeter wave and terahertz imaging systems. Its benefits include
scalability into large 2D arrays and operation with intermediate cryogenics in
the temperature range of 5 -- 10 K. We have previously demonstrated the
scalability in terms of device fabrication, optics integration, and cryogenics.
In this article, we address the last missing ingredient, the readout. The
concept, serial addressed frequency excitation (SAFE), is an alternative to
full frequency-division multiplexing at microwave frequencies conventionally
used to read out kinetic inductance detectors. We introduce the concept, and
analyze the criteria of the multiplexed readout avoiding the degradation of the
signal-to-noise ratio in the presence of a thermal anti-alias filter inherent
to thermal detectors. We present a practical scalable realization of a readout
system integrated into a prototype imager with 8712 detectors. This is used for
demonstrating the noise properties of the readout. Furthermore, we present
practical detection experiments with a stand-off laboratory-scale imager.Comment: 7 pages, 6 figure
A Unified Monte Carlo Treatment of Gas-Grain Chemistry for Large Reaction Networks. I. Testing Validity of Rate Equations in Molecular Clouds
In this study we demonstrate for the first time that the unified Monte Carlo
approach can be applied to model gas-grain chemistry in large reaction
networks. Specifically, we build a time-dependent gas-grain chemical model of
the interstellar medium, involving about 6000 gas-phase and 200 grain surface
reactions. This model is used to test the validity of the standard and modified
rate equation methods in models of dense and translucent molecular clouds and
to specify under which conditions the use of the stochastic approach is
desirable.
We found that at temperatures 25--30 K gas-phase abundances of HO,
NH, CO and many other gas-phase and surface species in the stochastic model
differ from those in the deterministic models by more than an order of
magnitude, at least, when tunneling is accounted for and/or diffusion energies
are 3x lower than the binding energies. In this case, surface reactions,
involving light species, proceed faster than accretion of the same species. In
contrast, in the model without tunneling and with high binding energies, when
the typical timescale of a surface recombination is greater than the timescale
of accretion onto the grain, we obtain almost perfect agreement between results
of Monte Carlo and deterministic calculations in the same temperature range. At
lower temperatures ( K) gaseous and, in particular, surface abundances
of most important molecules are not much affected by stochastic processes.Comment: 33 pages, 9 figures, 1 table. Accepted for publication in Ap
Single flux quantum circuits with damping based on dissipative transmission lines
We propose and demonstrate the functioning of a special Rapid Single Flux
Quantum (RSFQ) circuit with frequency-dependent damping. This damping is
achieved by shunting individual Josephson junctions by pieces of open-ended RC
transmission lines. Our circuit includes a toggle flip-flop cell, Josephson
transmission lines transferring single flux quantum pulses to and from this
cell, as well as DC/SFQ and SFQ/DC converters. Due to the desired
frequency-dispersion in the RC line shunts which ensures sufficiently low noise
at low frequencies, such circuits are well-suited for integrating with the
flux/phase Josephson qubit and enable its efficient control.Comment: 6 pages incl. 6 figure
Linked Selection and Gene Density Shape GenomeâWide Patterns of Diversification in Peatmosses
ABSTRACTGenome evolution under speciation is poorly understood in nonmodel and nonvascular plants, such as bryophytesâthe largest group of nonvascular land plants. Their genomes are structurally different from angiosperms and likely subjected to stronger linked selection pressure, which may have profound consequences on genome evolution in diversifying lineages, even more so when their genome architecture is conserved. We use the highly diverse, rapidly radiated group of peatmosses (Sphagnum) to characterize the processes affecting genome diversification in bryophytes. Using wholeâgenome sequencing data from populations of 12 species sampled at different phylogenetic and geographical scales, we describe high correlation of the genomic landscapes of differentiation, divergence, and diversity in Sphagnum. Coupled with evidence from the patterns of covariation among different measures of genetic diversity, phylogenetic discordance, and gene density, this provides strong support that peatmoss genome evolution has been shaped by the longâterm effects of linked selection, constrained by distribution of selection targets in the genome. Thus, peatmosses join the growing number of animal and plant groups where functional features of the genome, such as gene density, and linked selection drive genome evolution along predetermined and highly similar routes in different species. Our findings demonstrate the great potential of bryophytes for studying the genomics of speciation and highlight the urgent need to expand the genomic resources in this remarkable group of plants
Characterization of the Ho Electron Capture Spectrum: A Step Towards the Electron Neutrino Mass Determination
The isotope Ho is in many ways the best candidate to perform experiments to investigate the value of the electron neutrino mass. It undergoes an electron capture process to Dy with an energy available to the decay, Q, of about 2.8 keV. According to the present knowledge, this is the lowest Q value for such transitions. Here we discuss a newly obtained spectrum of Ho, taken by cryogenic metallic magnetic calorimeters with Ho implanted in the absorbers and operated in anticoincident mode for background reduction. For the first time, the atomic deexcitation of the Dy daughter atom following the capture of electrons from the 5s shell in Ho, the OI line, was observed with a calorimetric measurement. The peak energy is determined to be 48 eV. In addition, a precise determination of the energy available for the decay Q=(2.858±0.010±0.05)ââkeV was obtained by analyzing the intensities of the lines in the spectrum. This value is in good agreement with the measurement of the mass difference between Ho and Dy obtained by Penning-trap mass spectrometry, demonstrating the reliability of the calorimetric technique
- âŠ