516 research outputs found

    Hot-air contactless single-point incremental forming

    Get PDF
    Single-point incremental forming (SPIF) has emerged as a time-efficient approach that offers increased material formability compared to conventional sheet-metal forming techniques. However, the physical interaction between the forming tool and the sheet poses challenges, such as tool wear and formability limits. This study introduces a novel sheet-forming technique called contactless single-point incremental forming (CSPIF), which uses hot compressed air as a deformation tool, eliminating the requirement for physical interaction between the sheet and a rigid forming tool. In this study, a polycarbonate sheet was chosen as the case-study material and subjected to the developed CSPIF. The experiments were carried out at an air temperature of 160 °C, air pressure of 1 bar, a nozzle speed of 750 mm/min, and a step-down thickness of 0.75 mm. A Schlieren setup and a thermal camera were used to visualize the motion of the compressed hot air as it traveled from the nozzle to the sheet. The results showed that the CSPIF technique allowed for the precise shaping of the polycarbonate sheet with minimal springback. However, minor deviations from the designed profile were observed, primarily at the starting point of the nozzle, which can be attributed to the bending effects of the sample. In addition, the occurrence of sheet thinning and material buildup on the deformed workpiece was also observed. The average surface roughness (Ra) of the deformed workpiece was measured to be 0.2871 micron

    4D Printing of origami structures for minimally invasive surgeries using functional scaffold

    Get PDF
    Origami structures have attracted attention in biomedical applications due to their ability to develop surgical tools that can be expanded from a minimal volume to a larger and functional device. On the other hand, four-dimensional (4D) printing is an emerging technology, which involves 3D printing of smart materials that can respond to external stimuli such as heat. This short communication introduces the proof of concept of merging origami and 4D printing technologies to develop minimally invasive delivery of functional biomedical scaffolds with high shape recovery. The shape-memory effect (SME) of the PLA filament and the origami designs were also assessed in terms of deformability and recovery rate. The results showed that herringbone tessellation origami structure combined with internal natural cancellous bone core satisfies the design requirement of foldable scaffolds. The substantial and consistent SME of the 4D printed herringbone tessellation origami, which exhibited 96% recovery compared to 61% for PLA filament, was the most significant discovery of this paper. The experiments demonstrated how the use of 4D printing in situ with origami structures could achieve reliable and repeatable results, therefore conclusively proving how 4D printing of origami structures can be applied to biomedical scaffolds

    3DP printing of oral solid formulations: a systematic review

    Get PDF
    Three-dimensional (3D) printing is a recent technology, which gives the possibility to manufacture personalised dosage forms and it has a broad range of applications. One of the most developed, it is the manufacture of oral solid dosage and the four 3DP techniques which have been more used for their manufacture are FDM, inkjet 3DP, SLA and SLS. This systematic review is carried out to statistically analyze the current 3DP techniques employed in manufacturing oral solid formulations and assess the recent trends of this new technology. The work has been organised into four steps, (1) screening of the articles, definition of the inclusion and exclusion criteria and classi-fication of the articles in the two main groups (included/excluded); (2) quantification and charac-terisation of the included articles; (3) evaluation of the validity of data and data extraction process; (4) data analysis, discussion, and conclusion to define which technique offers the best properties to be applied in the manufacture of oral solid formulations. It has been observed that with SLS 3DP technique, all the characterisation tests required by the BP (drug content, drug dissolution profile, hardness, friability, disintegration time and uniformity of weight) have been performed in the majority of articles, except for the friability test. However, it is not possible to define which of the four 3DP techniques is the most suitable for the manufacture of oral solid formulations, because the selection is affected by different parameters, such as the type of formulation, the physi-cal-mechanical properties to achieve. Moreover, each technique has its specific advantages and disadvantages, such as for FDM the biggest challenge is the degradation of the drug, due to high printing temperature process or for SLA is the toxicity of the carcinogenic risk of the photopoly-merising material

    Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds

    Get PDF
    The latest advancements in bone scaffold technology have introduced novel biomaterials that have the ability to generate oxygen when implanted, improving cell viability and tissue maturation. In this paper, we present a new oxygen-generating polylactic acid (PLA)/calcium peroxide (CPO) composite filament that can be used in 3D printing scaffolds. The composite material was prepared using a wet solution mixing method, followed by drying and hot melting extrusion. The concentration of calcium peroxide in the composite varied from 0% to 9%. The prepared filaments were characterized in terms of the presence of calcium peroxide, the generated oxygen release, porosity, and antibacterial activities. Data obtained from scanning electron microscopy and X-ray diffraction showed that the calcium peroxide remained stable in the composite. The maximum calcium and oxygen release was observed in filaments with a 6% calcium peroxide content. In addition, bacterial inhibition was achieved in samples with a calcium peroxide content of 6% or higher. These results indicate that an optimized PLA filament with a 6% calcium peroxide content holds great promise for improving bone generation through bone cell oxygenation and resistance to bacterial infections

    Unraveling bovin phylogeny: accomplishments and challenges

    Get PDF
    The phylogenetic systematics of bovin species forms a common basis for studies at multiple scales, from the level of domestication in populations to major cladogenesis. The main big-picture accomplishments of this productive field, including two recent works, one in BMC Genomics, are reviewed with an eye for some of the limitations and challenges impeding progress. See Research article http://www.biomedcentral.com/1471-2164/10/17

    A case of uterine gangrene after termination of second trimester pregnancy complicated by chorioamnionitis

    Get PDF
    Uterine gangrene is a rare event during pregnancy. Here, we report the case of a 22-year-old patient pregnant in her second trimester presenting with premature rupture of membranes and a low-lying placenta. Hysterotomy was done to evacuate the pregnancy. The procedure was complicated by hemorrhage so bilateral uterine arteries and the left internal iliac artery were ligated to control the bleeding. She continued to run a fever in spite of antibiotics and on the 11th postoperative day, the patient developed signs of septicemia. Abdominal re-exploration was done revealing a gangrenous uterus with signs of peritonitis. Subtotal hysterectomy was done. The patient was discharged from the hospital in good health on the 10th post repeat laparotomy day

    Draft genome of the lowland anoa (Bubalus depressicornis) and comparison with buffalo genome assemblies (Bovidae, Bubalina)

    Get PDF
    Genomic data for wild species of the genus Bubalus (Asian buffaloes) are still lacking while several whole genomes are currently available for domestic water buffaloes. To address this, we sequenced the genome of a wild endangered dwarf buffalo, the lowland anoa (Bubalus depressicornis), produced a draft genome assembly, and made comparison to published buffalo genomes. The lowland anoa genome assembly was 2.56 Gbp long and contained 103,135 contigs, the longest contig being 337.39 kbp long. N50 and L50 values were 38.73 kbp and 19.83 kbp, respectively, mean coverage was 44x and GC content was 41.74%. Two strategies were adopted to evaluate genome completeness: (i) determination of genomic features with de novo and homology-based predictions using annotations of chromosome-level genome assembly of the river buffalo, and (ii) employment of benchmarking against universal single-copy orthologs (BUSCO). Homology-based predictions identified 94.51% complete and 3.65% partial genomic features. De novo gene predictions identified 32,393 genes, representing 97.14% of the reference's annotated genes, whilst BUSCO search against the mammalian orthologues database identified 71.1% complete, 11.7% fragmented and 17.2% missing orthologues, indicating a good level of completeness for downstream analyses. Repeat analyses indicated that the lowland anoa genome contains 42.12% of repetitive regions. The genome assembly of the lowland anoa is expected to contribute to comparative genome analyses among bovid species. [Abstract copyright: © The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.

    Effect of casting practice on the reliability of Al cast alloys

    Get PDF
    The properties of aluminium castings are strongly affected by their inclusion content, particularly entrained surface alumina films. These form due to the surface turbulence associated with mould filling, which causes the oxidised surface of a liquid metal to fold-over onto itself and be submerged into the bulk liquid with a thin layer of air entrapped within it. This is known as entrainment action. These flaws have been reported to increase the variability of the fracture strengths of Al alloy castings. This means that shape castings in light alloys can have inconsistent properties, which makes designing structures employing shape castings more difficult. Entrained surface layers can cause premature failure, but also have been associated with other defects, such as hydrogen porosity, shrinkage porosity, intermetallic compounds and hot tearing. Recent research has suggested that the air inside the defect would react with the surrounding melt leading to its consumption, which may enhance the mechanical properties of the casting. In this work, liquid aluminium was poured into three identical ceramic moulds which were immediately placed in a furnace to preserve the molten metal at 800 C, for different periods of time prior to freezing. The Weibull moduli of the plate castings were determined under tensile conditions, and their fracture surfaces examined using SEM. Investigation of the fracture surfaces of the specimens detected many alumina layers at different locations. Many of which were found inside pores, reflecting the role of entrained defects in the formation of porosity. The results also suggested that opposite phenomena may take place during the holding treatment. The consumption of air inside the entrained defects due to reaction with the surrounding molten metal may lead to improvements in mechanical properties, but this may be accompanied by hydrogen passing into the defects, which has a deleterious effect on properties
    corecore