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Abstract  

Origami structures have attracted attention in biomedical applications due to their ability to 

develop surgical tools that can be expanded from a minimal volume to a larger and functional 

device. On the other hand, Four-dimensional (4D) printing is an emerging technology, which 

involves 3D printing of smart materials that can respond to external stimuli such as heat. This 

short communication introduces the proof of concept of merging origami and 4D printing 

technologies to develop minimally invasive delivery of functional biomedical scaffolds with 

high shape recovery. The shape memory effect (SME) of the PLA filament and the origami 

designs were also assessed in terms of deformability and recovery rate. The results showed that 

herringbone tessellation origami structure combined with internal natural cancellous bone core 

satisfies the design requirement of foldable scaffolds. The substantial and consistent SME of 

the 4D printed herringbone tessellation origami that exhibited 96% recovery compared to 61% 

for PLA filament was the most significant discovery of this paper. The experiments 

demonstrated how the use of 4D printing in situ with origami structures could achieve reliable 

and repeatable results. Therefore, conclusively proving how 4D printing of origami structures 

can be applied to biomedical scaffolds.  

Keywords: Origami; Additive Manufacturing; 4D printing; Scaffolds; shape memory 

polymer
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1. Introduction 

Bone is a complex structure that is made up of several constitutes such as fibres, cells, and 

minerals. This structure is far different from other human tissues; the extracellular cells are 

mineralised, which give it significant mechanical strength and stiffness. As a result, it plays a 

significant role to support the body structure and allows the movement of Skelton [1]. Several 

medical problems can lead to the loss or the damage of human bones such as disease, trauma 

and injury, which requires medical treatment. Bone repair, regeneration or replacements 

focuses on tissue replacement from human body site to another, autograft, or from one person 

to another, allograft. Although these procedures have been well established and have shown 

excellent results, major issues are in both techniques such as being painfully expensive, 

constrained, and subject to infection or body rejection in case of an allograft [2]. Bone scaffolds 

represent a favourable alternative to autograft and allograft techniques. They are used as a 

template for cell attachment, proliferation, and differentiation to promote bone regeneration. 

Bone scaffolds require being biocompatible, biodegradable, strong, and porous to promote the 

flow of body fluid [3, 4]. However, placing current scaffolds designs can require highly invasive 

surgery, which is often required so that there is space to place what can be large and bulky 

scaffolds. Scaffold insertion can be particularly damaging to the patient depending on where it 

is being placed. Minimally invasive surgery is associated with fewer complications, less pain, 

shorter hospital stay, as well as the cosmetic benefit of reducing post-surgery scars. 

Implementing minimally invasive surgery in bone scaffolds treatment requires smart scaffold 

that can be deformed before insertion and then recovery it once in position so that it would 

mean smaller points of incision would be required.  

Additive manufacturing (AM) or 3D printing is the manufacturing of a 3D object layer by layer 

from a digital design. There are several categories of AM technologies such as Powder bed 
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fusion, Material Extrusion, Direct Energy Deposition, Vat Photo Polymerisation, Binder 

Jetting,  Sheet lamination, and Material Jetting. Material extrusion is a low cost, easy to use 

and available technique in many commercial forms [5, 6]. In Material extrusion, the material is 

extruded under pressure through a nozzle according to a digital design. The extruded material 

is deposited on top of each layer and solidify. Fused deposition modelling (FDM) is a technique 

of material extrusion where a thermoplastic filament is softened by heaters and extruded from 

a nozzle, whereas, pneumatic or syringe extrusion (PE/SE) techniques extrude paste materials 

such as ceramic clays. Vat polymerisation (VP) technique uses UV to initiate the cross-linking 

of a layer of photosensitive resin to cure it into a solid polymer. Afterwards, another layer of 

the polymer is deposited and cured onto the past layers until the part is completed. VP 

techniques include stereolithography (SLA), continuous liquid interface production (CLIP), 

digital light processing (DLP), and photon polymerisation [7-10]. The technique has been 

adopted to fabricate polymer and ceramic micro parts for MEMS applications as it 

outperformed the conventional soft lithography processes that are limited to fabricate 2.5 D 

parts and not real 3D components [11-17]. Powder bed fusion (PBF) is an approach at which a 

laser beam selectively scan a layer of the powder according to a digital design to build 

components in the typical layer-wise way [18, 19]. In direct energy deposition (DED), a laser or 

electron beam is focused on melting metal powder. The molten droplets are then deposited on 

the top of a substrate. Laser energy net shaping (LENS), Laser deposition welding (LDW), and 

wire and Arc AM (WAAM) are widely used techniques of DED [20-22]. In binder jetting, the 

powder is bound by spraying binder droplets from a jet on a top of a layer of powder then the 

powder platform is then lowered to apply another layer on top of the first layer [23-25]. Sheet 

lamination (SL) cuts and glues layers of materials by using a laser beam, or ultrasonic to bond 

the stacked layers. Additional machining and surface finishing are typically used after 3D 

printing [26, 27]. In material Jetting (MJ), droplets of the materials are deposited and dried or 
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cured layer by layer. They are different ways to deposit the material such as in continuous 

inkjet at which the material is deposited with the aid of continues pressure [28, 29], and drop on 

demand (DOD) which uses discrete pressure instead of continuous pressure [30]. Additive 

manufacturing has the ability to process a wide range of materials such as metals [31], polymers 

[32], and ceramics [4]. The technology has been adopted in many industries, such as aerospace 

[33, 34], biomedical [35], defence [36], energy [37]. Four-dimensional (4D) printing is an emerging 

technology that refers to the additive manufacture of material that responds to changes in its 

immediate environment. Therefore, enabling engineered solutions to be recovered without 

direct human or computer interaction. The technology was first introduced in 2013 and since 

then attracts great attention in many biomedical applications. 4D printing offers several benefits 

such as the ability to produce smart products from smart material, change of product geometry 

when required, and adding innovation in the design and development stage [36]. These benefits 

enabled the penetration of this technology to broad applications in engineering, dentistry, 

medical, and material science.  

Shape-memory polymers are stimuli-responsive polymers that can change their shape from one 

to another by the use of heat, light, or electricity. The thermally induced shape memory effect 

presents in specific polymers is due to shape recovery of polymers when subject to heat. The 

chains in the amorphous polymers are completely dispersed randomly in the matrix without 

the restriction of crystallites in semicrystalline polymers. On the other hand, movements of the 

polymer segments are frozen in the case of the glassy state. The rubber-elastic state starts when 

increasing the activation energy, which initiates the rotation around the segment bonds. This 

enables the polymers chains to take up energetically equivalent shapes with compact random 

macromolecules. The rubbery state occurs above the glass transition temperature (Tg), and the 

polymer becomes flexible. The original shape of the polymer can be recovered when it is 
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plastically deformed only upon heating to above Tg. In this case, physical or chemical cross-

link works to store the elastic energy during shape programming and the driving recovery force 

[38]. The presence of shape-switching parts nodes or shape-fixing parts in polylactic polymers 

PLAs is behind the shape recovery. Both physical cross-links and the crystallisation of PLAs 

act as the net-points and therefore have the shape-memory ability. However, the shape-memory 

effect of PLA polymers is often restricted to minor deformations it breaks when programming 

PLA with more than 10%. This limits the potential for using PLA for minimally invasive 

surgeries [39].  

This communication introduces a design and manufacturing approach to develop deployable 

scaffolds using 4D printing of shape memory polymer (SMP) that will be inserted into a cavity 

in the body through minimally invasive surgery. Once in position, the scaffold will be 

recovered, causing it to increase in size and fill the cavity where it will substitute as the tissue’s 

extracellular matrix (ECM). The ECM coordinates how cells coordinate with each other as well 

as providing overall structure to a tissue. An engineered tissue scaffold replicates a diseased or 

damaged tissue’s ECM temporarily when a native ECM is not present. Scaffolds are used to 

aid the recovery of a patient when a cavity in the tissue would prohibit the normal regeneration 

of the tissue. Therefore, a scaffold will be inserted into a cavity to substitute as the ECM so 

that healthy cells may migrate and proliferate across it, filling the cavity. The primary focus of 

this paper was not on the biomedical interaction between cells and the scaffold but was instead 

focused on achieving the benefit of SMP and smart structures in tissue engineering and to 

introduce the proof of concept of deployable biomedical scaffolds using origami structures. 

2. Design and Experimental 

There are multiple types of additive manufacture and processed materials. However, this study 

employs FDM as it the most common method to process polylactic acid (PLA). PLA lends 
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itself particularly well to medical applications since it is biodegradable, biocompatible, non-

toxic, and an eco-friendly polymer [40]. Therefore, it has full clearance to be used as a material 

for medical implants by both the European Medical Agency (EMA) and the Federal Drug 

Administration (FDA). In addition to its ability to be used for implants, it is a shape memory 

polymer (SMP) meaning PLA can be 4D printed. 

2.1 Origami Design 

Origami tessellations are origami-folding patterns that repeat themselves and therefore can be 

scaled up and down depending on application with the potential of the fold being infinitely 

repeated. Different tessellations enabled for acute management of pre-and post-shape recovery 

as well as how the polymer would origami move between the states [41, 42]. The design of the 

scaffolds was split into microstructure and macrostructure design. The microstructure design 

was concerned with how the scaffold’s pores are shaped, sized, and arranged to promote cell 

differentiation, migration, and proliferation. Whereas, the macrostructure was concerned with 

the design of a recovered scaffold. The primary consideration of the macrostructure was to 

replicate bone morphology while simultaneously employing origami techniques to exploit the 

SME of PLA.   

Origami Herringbone and Waterbomb tessellation designs were considered in this study as 

shown in Figure 1a,b. The tessellations were curved around on itself to create a tube. As 

recovery occurs, the cavity in the middle grows and so accurately represents the medullary 

cavity found in many long bones. By far the most significant benefit of this design is the 

substantial difference in volume between recovered and collapsed forms Figure 1c shows how 

compressing, what is already very similar in structure to real cancellous bone, will close the 

gaps between replicated trabeculae, allowing for a smaller geometry before recovery. Almost 

all bones have a section of compact bone with a cancellous bone interior. Therefore, this kind 
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of scaffold would be highly transferable between different bones within the body. There are 

two potential problems with this design. First, the size difference between deformed and 

recovered form is not as significant as in other designs. Secondly, and most importantly, this 

design does not offer a great solution to reducing the size of the scaffold that needs to substitute 

for compact bone. The combination of an origami design for the outer edges of the scaffold, 

which would substitute for compact bone, and the porous replica of cancellous bone to fill the 

centre, as shown in Figure 1d. This merger of designs eliminates the weaknesses of the 

individual designs to create a solution that will meet the needs of the patient, and surgeon.  

 

Figure 1. CAD drawing of (a) herringbone tessellation origami, (b) Waterbomb tessellation 

origami, (c) Natural cancellous bone, (d) Combined tessellation origami and natural 

cancellous bone design 

(a) (b) 

(d) (c) 
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2.2 Fabrication and Characterisation 

The as-received PLA filaments (PLA, makerbot-UK) were tested first using a standard 

dynamic-mechanical analyser (DMA, Kingston University) to investigate the effect of the 

heating temperature on the storage modulus. Dynamic mechanical analysis (DMA) was 

generally used to assess polymers viscoelastic properties as they change from glassy to rubbery 

like characteristics. Filaments with 0.7 mm in diameter were cut to a length of 15 cm and 

attached to the dynamic-mechanical analyser at a frequency of 1 Hz and heated from 25 to 90 

◦C.  

Two properties are associated with shape memory polymers. These are the shape fixity and 

shape recovery. Shape fixity is the ability of the switching points to fix the temporary shape, 

whereas shape recovery measures the ability of SMP to recover their original shape.  Many 

SMPs such as PLA have high shape fixity but poor shape recovery, as the material can not 

generate sufficient recovery force during. We focus on this research to measure the shape 

recovery of PLA filament to understand the material characteristics independently of the design 

influence. 1.75mm diameter PLA filament was cut into 30x straight test samples of 100mm 

length. Samples were placed in the slit in threes and heated to the melt temperature of 200°C. 

Due to all polymer cross-links breaking at this temperature, the samples straightened out under 

their weight. Once removed and allowed to cool samples were ready for the experiment. 

Samples were heated to just above the Tg of approximately 60°C-65°C in a water bath of 70°C, 

shown in figure 24. The reason for using a water bath with a temperature higher than the Tg 

was so tested samples would not fall below the glass transition temperature when they were 

taken out of the water for deformation.  Samples were taken out individually and deformed to 

a range of predetermined angles and allowed to cool. Once cooled back to room temperature, 

each sample angle was remeasured because it was common that the angle achieved was a few 
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degrees off the intended angle. Samples were then re-submerged in the water bath at 70°C, and 

the shape memory effect was observed. After only a few seconds, the samples would start 

returning to their original programmed straight form. Within no more than 10 seconds, the 

shape memory effect was over. Once the SME was complete, the samples could cool. The 

recovery angle of each sample was measured. The difference between the recovered angle and 

the actual test angle was calculated as a percentage of the actual test angle. This percentage 

shows how much the geometry recovered. Figure 2 shows the experimental procedure of 

measurement of shape memory effect of PLA filaments. 
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Figure 2: (a) Preparing PLA samples, (b) 70°C Water bath heating test samples; (c) one of the 

samples deformed shape (d) recovered shape. 

The tubular and the modified herringbone tessellation origami structures were 3D printed using 

makerbot replicator 2. PLA 1.75 mm filament was used as the feeding stock in the 3D printer. 

The objects were printed with 0.15mm layer thickness at 100mm in height, 60mm in diameter 

and with a 2.5mm wall thickness, from PLA to produce the prototypes.  Similarly to the SME 

measurements of the PLA filament, The models were characterised in terms of the deformation 

and recovery to test how the SME would affect the behaviour of the two origami models. The 

(a) (b) 

(c) (d) 
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aim was to realise the most significant and consistent SME possible, but this time within the 

whole models. Another aspect of the experiment was whether the 61.5% recovery found in 

PLA filament was a reproducible percentage recovery figure for origami folds.  

The printed objects were subject a compressive force and twisted torque causing deformation 

under to just above the Tg of approximately 60°C-65°C in a water bath at 70°C. The reason for 

using a water bath with a temperature higher than the Tg was so tested samples would not fall 

below the Tg when they were taken out of the water for deformation. The prototypes were 

removed one at a time from the water bath and deformed. Twisted torque and compression load 

with the aid of a G-clamp were used because they meant that the load could be kept on the 

prototypes as they were allowed to cool. The deformation amount was determined by when the 

folds had fully folded in on themselves. Once cooled back to room temperature, each deformed 

prototype was measured to calculate the ratio between initial print size and deformation size. 

Samples were then re-submerged in the water bath at 70°C, and the shape memory effect was 

observed. Once the SME was complete, the samples were removed from the bath and allowed 

to cool. The difference between the recovered geometry and the deformed geometry was 

calculated as a percentage of the deformed geometry.  

3. Results and Discussion 

3.1 Dynamic Mechanical Thermal Properties of the PLA filaments 

Figure 3 shows the dynamic mechanical thermal properties of the PLA filaments when heated 

from 25 to 90 Celsius. The as received filaments show a near plateau storage modulus over 

temperature range from 30 to 65 Celsius at which it drops sharply afterwards where it changes 

from the glassy to the rubbery state. 
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Figure 3: Dynamic Mechanical Thermal Properties of the PLA filaments 

3.2 Deformation and Shape Recovery of the PLA filaments  

The recovery behaviour of the PLA filament both the deformed and the recovered is shown in 

Table 1, Table 2, and Table 3. There was an expectation that the results would show decreasing 

rates of recovery as the intended test angle was increased. This expectation was due to higher 

forces being applied to achieve the greater angle deformations. This expectation was shown to 

be incorrect, as shown in Table 1 and Table 2. In fact, the results of the experiment showed no 

correlation between changes in the intended test angle influencing the percentage recovered. 

The lack of correlation would have significant implications for the future scaffold designs.  The 

result showed that PLA polymer recover around 61.5% with SD of 4.3% regardless to the 

bending angle. 
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Table 1: Deformed PLA Test Samples 

 Repeat 1 Repeat 2 Repeat 3 Repeat 4 Repeat 5 

30°      

60°      

90°      

120°      

150°      

180°      

 

 

 

Table 2: Recovered PLA Test Samples 

 Repeat 1 Repeat 2 Repeat 3 Repeat 4 Repeat 5 

30°      

60°      

90°      

120°      

150°      

180°      
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Table 3: The quantified results of the deformation and recovery of the PLA filaments. 

Intended test angle 30 60 90 120 150 180 

Repeat 1 Actual test angle 30 53 81 110 133 160 
Angle post-recovery 12 22 28 42 50 58 
Percentage recovered 60.0% 58.5% 65.4% 61.8% 62.4% 63.8% 

Repeat 2 Actual test angle 31 50 80 112 131 158 
Angle post-recovery 15 22 27 32 50 66 
Percentage recovered 51.6% 56% 66.3% 71.4% 61.8% 58.2% 

Repeat 3 Actual test angle 23 52 77 108 136 157 
Angle post-recovery 8 24 31 37 50 61 
Percentage recovered 65.2% 53.8% 59.7% 65.7% 63.2% 61.1% 

Repeat 4 Actual test angle 30 49 79 108 137 156 
Angle post-recovery 14 18 28 40 53 60 
Percentage recovered 53.3% 63.3% 64.6% 63.0% 61.3% 61.5% 

Repeat 5 Actual test angle 34 54 82 106 142 158 
Angle post-recovery 13 23 29 41 48 60 
Percentage recovered 61.8% 57.4% 64.6% 61.3% 66.2% 62.0% 

 

3.3 Deformation and Shape Recovery of the Origami Tessellations 

The two herringbone and waterbomb tessellation origami structures after twisting and recovery 

are shown in Figure 4. The most significant find from the measurement of the deformation and 

recovery of the two herringbone and Waterbomb tessellation origami structures was that the 

expected recovery of approximately 65.1% of each angular fold, suggested by the results of the 

PLA filament result, was not exhibited. The angle recovery was far greater than that shown by 

the filament test samples in the first experiment. Recovery rates had a mean average of 96% 

for the two test samples. All independent variables have been kept constant, except for the 

geometry of the test samples. Therefore, it can be deduced that the geometry of the origami 

induced internal stresses within the two models, which aided the SME and explain why such 

greater recovery rates were observed. The twisted waterbomb tessellation origami structures 

did not deform in the intended direction. The recovery of the tubular models still achieved a 

result that was 96% of the initial print geometry; however, because the deformation of the 

Waterbomb tessellation origami structure was unpredictable, it did not meet the requirements 
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of the biomedical scaffold, and so it was discounted as a potential biomedical scaffold to be 

taken forward. Only the Herringbone models were now left as the tessellation type to be taken 

forward, Figure 4d shows the Herringbone models after being deformed and recovered. 

 

Figure 4: (a) 80°C water bath heating for waterbomb (up) and herringbone (down) 

tessellation origami structures (b) after deformation, (c) after recovery, (d) herringbone 

tessellation after being deformed and recovered for the fourth time. 

To better evaluate how herringbone tessellation origami could deform and be recovered, the 

experiment was repeated. The difference was that this time the direction of deformation was 

changed from twisting to compression along the central axis. The amount of deformation 

observed without structural failure was far more significant. The deformation took the height 

from 100mm to 25mm. The recovery rate for this test was again 96%, though several cracks 

(c) 

(b) 

30 mm 

30 mm 

(a) 

30 mm 

(d) 
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were observed. This direction of deformation and recovery was repeated on the same 

herringbone sample several times, and the rate of recovery remained at 96% each time causing 

the tube to decrease in recovered height each time the test was repeated. Edges became softer 

each time the test was repeated, as shown in Figure 5.  

 

Figure 5: (a) as printed herringbone tessellation origami (b) after compression, (c) after 

recovery. 

The scaffold interior for substituting cancellous was embedded to the herringbone tessellation 

origami to replicate cancellous bone and to validate its deformation and recovery behaviour. 

Each thin strand of the scaffold crossing the scaffold core replicates an individual trabecula. 

Trabeculae have a similar cross-sectional microstructure to osteons; however, Haversian canals 

do not pass through their centre. Therefore, the central core does not require blood vessels to 

pass through the replica trabeculae. The requirements of the central core’s macrostructure were 

near enough the same as the outer compact bone substitute section of the scaffold. The only 

real difference being the density of the central core needed to be less to create the large pores 

visible in cancellous bone. The herringbone tessellation origami was combined with the central 

(a) (b) (c) 

Cracks 

30 mm 30 mm 30 mm 
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core to create the final CAD model, shown in Figure 6a. Figure 6b shows the 3D printed sample 

with the porous central core. The figure shows core how light can pass through the cancellous 

scaffold substitute, proving that the pores are interconnected 

 

Figure 6: (a) design of the central core, (b) 3D printed of herringbone tessellation origami 

with substituting cancellous core. 

The same SME procedure was applied to the process herringbone tessellation origami with 

substituting cancellous core, and the results are shown in Figure 7. Unsurprisingly the amount 

that the model deformed was considerably less than the tubular prototypes shown in Figure 5 

due to the substantial increase in stiffness of the central core. Despite this, the scaffold was 

deformed to 70mm and then recovered to 95mm, as shown in Figure 7. All previous 

experiments had been testing individual aspects of the developed design to optimise the SME 

for when combined into the final design. Therefore, this was the first test exploring how the 

SME of a full scaffold prototype, and it was relatively successful, though the deformation was 

less than the tubular models. Future investigations will consider the effect of parameters such 

as layer thickness and building directions on the SME.  

(a) (b) 
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Figure 7: (a) as printed herringbone tessellation origami with porous core (b) after 

compression, (c) after recovery. 

4. Conclusions 

A novel concept of deployable scaffolds using a combination of origami and 4D printing 

technologies was introduced. The design strategy applied in the paper is based on the creation 

of porous origami structures in its nearly final shape and deformed into a volume suitable for 

minimal invasion surgeries. We characterised the shape memory behaviour of the PLA material 

and the manufactured designs. We characterised the shape memory behaviour of the PLA 

filaments and the manufactured designs. The PLA filaments showed a constant shape recovery 

of about 61% regardless of the deformation amount. On the other hand, Tubular herringbone 

tessellation origami showed significant deformation capabilities and a high recovery rate of 

about 96% despite the presence of cracks in the deformed samples. The same recovery rate was 

achieved when adding porous natural cancellous bone core to the herringbone tessellation 

origami though the deformation amount was less significant. Future studies are recommended 

to characterise the mechanical and biocompatible properties that are needed for the clinical 

adoption of this approach. The use of 4D printing in situ with origami structures is relatively 

(a) (b) (c) 

30 mm 30 mm 30 mm 
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inexpensive and easy to implement which makes it also suitable for the development of a wide 

range of foldable structures.  
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