4,456 research outputs found

    Automated pattern analysis in gesture research : similarity measuring in 3D motion capture models of communicative action

    Get PDF
    The question of how to model similarity between gestures plays an important role in current studies in the domain of human communication. Most research into recurrent patterns in co-verbal gestures – manual communicative movements emerging spontaneously during conversation – is driven by qualitative analyses relying on observational comparisons between gestures. Due to the fact that these kinds of gestures are not bound to well-formedness conditions, however, we propose a quantitative approach consisting of a distance-based similarity model for gestures recorded and represented in motion capture data streams. To this end, we model gestures by flexible feature representations, namely gesture signatures, which are then compared via signature-based distance functions such as the Earth Mover's Distance and the Signature Quadratic Form Distance. Experiments on real conversational motion capture data evidence the appropriateness of the proposed approaches in terms of their accuracy and efficiency. Our contribution to gesture similarity research and gesture data analysis allows for new quantitative methods of identifying patterns of gestural movements in human face-to-face interaction, i.e., in complex multimodal data sets

    Automated pattern analysis in gesture research : similarity measuring in 3D motion capture models of communicative action

    Get PDF
    The question of how to model similarity between gestures plays an important role in current studies in the domain of human communication. Most research into recurrent patterns in co-verbal gestures – manual communicative movements emerging spontaneously during conversation – is driven by qualitative analyses relying on observational comparisons between gestures. Due to the fact that these kinds of gestures are not bound to well-formedness conditions, however, we propose a quantitative approach consisting of a distance-based similarity model for gestures recorded and represented in motion capture data streams. To this end, we model gestures by flexible feature representations, namely gesture signatures, which are then compared via signature-based distance functions such as the Earth Mover's Distance and the Signature Quadratic Form Distance. Experiments on real conversational motion capture data evidence the appropriateness of the proposed approaches in terms of their accuracy and efficiency. Our contribution to gesture similarity research and gesture data analysis allows for new quantitative methods of identifying patterns of gestural movements in human face-to-face interaction, i.e., in complex multimodal data sets

    Square lattice Ising model susceptibility: Series expansion method and differential equation for χ(3)\chi^{(3)}

    Full text link
    In a previous paper (J. Phys. A {\bf 37} (2004) 9651-9668) we have given the Fuchsian linear differential equation satisfied by χ(3)\chi^{(3)}, the ``three-particle'' contribution to the susceptibility of the isotropic square lattice Ising model. This paper gives the details of the calculations (with some useful tricks and tools) allowing one to obtain long series in polynomial time. The method is based on series expansion in the variables that appear in the (n1)(n-1)-dimensional integrals representing the nn-particle contribution to the isotropic square lattice Ising model susceptibility χ\chi . The integration rules are straightforward due to remarkable formulas we derived for these variables. We obtain without any numerical approximation χ(3)\chi^{(3)} as a fully integrated series in the variable w=s/2/(1+s2)w=s/2/(1+s^{2}), where s=sh(2K) s =sh (2K), with K=J/kTK=J/kT the conventional Ising model coupling constant. We also give some perspectives and comments on these results.Comment: 28 pages, no figur

    Boson-fermion mappings for odd systems from supercoherent states

    Get PDF
    We extend the formalism whereby boson mappings can be derived from generalized coherent states to boson-fermion mappings for systems with an odd number of fermions. This is accomplished by constructing supercoherent states in terms of both complex and Grassmann variables. In addition to a known mapping for the full so(2NN+1) algebra, we also uncover some other formal mappings, together with mappings relevant to collective subspaces.Comment: 40 pages, REVTE
    corecore