55 research outputs found

    Probing the (H3-H4)(2) histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling

    Get PDF
    The (H3-H4)2 histone tetramer forms the central core of nucleosomes and, as such, plays a prominent role in assembly, disassembly and positioning of nucleosomes. Despite its fundamental role in chromatin, the tetramer has received little structural investigation. Here, through the use of pulsed electron-electron double resonance spectroscopy coupled with site-directed spin labelling, we survey the structure of the tetramer in solution. We find that tetramer is structurally more heterogeneous on its own than when sequestered in the octamer or nucleosome. In particular, while the central region including the H3-H3′ interface retains a structure similar to that observed in nucleosomes, other regions such as the H3 αN helix display increased structural heterogeneity. Flexibility of the H3 αN helix in the free tetramer also illustrates the potential for post-translational modifications to alter the structure of this region and mediate interactions with histone chaperones. The approach described here promises to prove a powerful system for investigating the structure of additional assemblies of histones with other important factors in chromatin assembly/fluidity

    The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation

    Get PDF
    Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly

    Large cross-effect dynamic nuclear polarisation enhancements with kilowatt inverting chirped pulses at 94 GHz

    Get PDF
    This work was supported by UK Research Council EPSRC research grant EP/R13705/1 and Wellcome Trust 099149/Z/12/Z.Dynamic nuclear polarisation (DNP) is a process that transfers electron spin polarisation to nuclei by applying resonant microwave radiation, and has been widely used to improve the sensitivity of nuclear magnetic resonance (NMR). Here we demonstrate new levels of performance for static cross-effect proton DNP using high peak power chirped inversion pulses at 94 GHz to create a strong polarisation gradient across the inhomogeneously broadened line of the mono-radical 4-amino TEMPO. Enhancements of up to 340 are achieved at an average power of a few hundred mW, with fast build-up times (3 s). Experiments are performed using a home-built wideband kW pulsed electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz, integrated with an NMR detection system. Simultaneous DNP and EPR characterisation of other mono-radicals and biradicals, as a function of temperature, leads to additional insights into limiting relaxation mechanisms and give further motivation for the development of wideband pulsed amplifiers for DNP at higher frequencies.Publisher PDFPeer reviewe

    HDX-guided EPR spectroscopy to interrogate membrane protein dynamics

    Get PDF
    This project was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) grant (BB/S018069/1) to C.P., who also acknowledges support from the Wellcome Trust (WT) (219999/Z/19/Z) and the Chinese Scholarship Council (CSC) in the form of studentships for B.J.L. and B.W., respectively. A.N.C. is a Sir Henry Dale Fellow jointly funded by the WT and the Royal Society (220628/Z/20/Z). Funding from the BBSRC (BB/M012573/1) enabled the purchase of mass spectrometry equipment.Solvent accessibilities of and distances between protein residues measured by pulsed-EPR approaches provide high-resolution information on dynamic protein motions. We describe protocols for the purification and site-directed spin labeling of integral membrane proteins. In our protocol, peptide-level HDX-MS is used as a precursor to guide single-residue resolution ESEEM accessibility measurements and spin labeling strategies for EPR applications. Exploiting the pentameric MscL channel as a model, we discuss the use of cwEPR, DEER/PELDOR, and ESEEM spectroscopies to interrogate membrane protein dynamics. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).Publisher PDFPeer reviewe

    Investigating native metal ion binding sites in mammalian histidine-rich glycoprotein

    Get PDF
    Funding: For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license to any Accepted Author Manuscript version arising. They acknowledge support by the Wellcome Trust (204821/Z/16/Z), the British Heart Foundation (PG/15/9/31270 and FS/15/42/31556), and the Leverhulme Trust (RPG-2018–397). J.L.W. acknowledges support by the BBSRC DTP Eastbio. B.E.B. acknowledges equipment funding by BBSRC (BB/R013780/1 and BB/T017740/1).Mammalian histidine-rich glycoprotein (HRG) is a highly versatile and abundant blood plasma glycoprotein with a diverse range of ligands that is involved in regulating many essential biological processes, including coagulation, cell adhesion, and angiogenesis. Despite its biomedical importance, structural information on the multi-domain protein is sparse, not least due to intrinsically disordered regions that elude high-resolution structural characterization. Binding of divalent metal ions, particularly ZnII, to multiple sites within the HRG protein is of critical functional importance and exerts a regulatory role. However, characterization of the ZnII binding sites of HRG is a challenge; their number and composition as well as their affinities and stoichiometries of binding are currently not fully understood. In this study, we explored modern electron paramagnetic resonance (EPR) spectroscopy methods supported by protein secondary and tertiary structure prediction to assemble a holistic picture of native HRG and its interaction with metal ions. To the best of our knowledge, this is the first time that this suite of EPR techniques has been applied to count and characterize endogenous metal ion binding sites in a native mammalian protein of unknown structure.Publisher PDFPeer reviewe

    The spatial effect of protein deuteration on nitroxide spin-label relaxation:implications for EPR distance measurement

    Get PDF
    This work was supported by a Wellcome Trust Senior Fellowship (095062) to T.O.-H. The Authors would also like to acknowledge funding from The MRC – United Kingdom, Grant G1100021.Pulsed electron-electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems.Publisher PDFPeer reviewe

    High-sensitivity Gd3+-Gd3+ EPR distance measurements that eliminate artefacts seen at short distances

    Get PDF
    We would like to acknowledge EPSRC (EP/R)13705/1) for current funding on the HiPER project, and the Wellcome Trust for a multi-user equipment grant (099149/Z/12/Z) for upgrades on the Q-band system. We thank the Royal Society for an International Exchanges Grant and The Weizmann-UK Joint Research Program for allowing bilateral travel and research between the University of St Andrews and the Weizmann Institute of Science. JEL thanks the Royal Society for a University Research Fellowship. MJT thanks EPSRC for a CM-CDT studentship (EP/LO15110/1). MQ and AG thank the Deutsche Forschungsgemeinschaft (DFG) for funding within SPP 1601 (GO555/6-2).Gadolinium complexes are attracting increasing attention as spin labels for EPR dipolar distance measurements in biomolecules and particularly for in-cell measurements. It has been shown that flip-flop transitions within the central transition of the high spin Gd3+ ion can introduce artefacts in dipolar distance measurements, particularly when measuring distances less than 3–4 nm. Previous work has shown some reduction of these artefacts through increasing the frequency separation between the two frequencies required for the Double Electron-Electron Resonance (DEER) experiment. Here we use a high power (1 kW), wideband, non-resonant, system operating at 94 GHz to evaluate DEER measurement protocols using two rigid Gd(III)-rulers, consisting of two [GdIII(PyMTA)] complexes, with separations of 2.1 nm and 6.0 nm, respectively. We show that by avoiding the |−1/2⟩ → |1/2⟩ central transition completely, and placing both the pump and the observer pulses on either side of the central transition, we can now observe apparently artefact-free spectra and narrow distance distributions, even for a Gd-Gd distance of 2.1 nm. Importantly we still maintain excellent signal-to-noise ratio and relatively high modulation depths. These results have implications for in-cell EPR measurements at naturally occurring biomolecule concentrations.Publisher PDFPeer reviewe

    Analysis of the Intrinsically Disordered N-Terminus of the DNA Junction-Resolving Enzyme T7 Endonuclease I:Identification of Structure Formed upon DNA Binding

    Get PDF
    This work was supported by grants from The Engineering and Physical Sciences Research Council (EPSRC), Basic Technology EP/F039034/1, The Wellcome Trust, 099149/Z/12/Z, and Cancer Research UK (CRUK), C28/A18604.The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7-10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2-12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography.Publisher PDFPeer reviewe

    The use of composite pulses for improving DEER signal at 94 GHz

    Get PDF
    C.L.M. acknowledges funding from EPSRC as part of the iMRCDT. The W-band instrument was developed under the U.K. Research Councils Basic Technology Program (grant EP/F039034/1). S.V.D. acknowledges the Research Foundation Flanders (FWO) for financial support (grant G.0687.13). J.E.L. thanks the Royal Society for a University Research Fellowship. Sylvia Dewilde (Biomedical Sciences, University of Antwerp) is thanked for the purification of the Cys46Ser/ Cys55Ser mutant of human neuroglobin (NGB) used in this work. Adelheid Godt’s group is thanked for the synthesis of MSA236. We also thank the Wellcome Trust (grant 099149/Z/12/Z). The research data (and/or materials) supporting this publication can be accessed at http://dx.doi.org/10.17630/b65d05e6-6efa-48b9-a741-5a6322159a4a.The sensitivity of pulsed electron paramagnetic resonance (EPR) measurements on broad-line paramagnetic centers is often limited by the available excitation bandwidth. One way to increase excitation bandwidth is through the use of chirp or composite pulses. However, performance can be limited by cavity or detection bandwidth, which in commercial systems is typically 100-200 MHz. Here we demonstrate in a 94 GHz spectrometer, with > 800 MHz system bandwidth, an increase in signal and modulation depth in a 4-pulse DEER experiment through use of composite rather than rectangular π pulses. We show that this leads to an increase in sensitivity by a factor of 3, in line with theoretical predictions, although gains are more limited in nitroxide-nitroxide DEER measurements.PostprintPeer reviewe
    • …
    corecore