175 research outputs found

    Exploring fraity and sarcopenia in older adults admitted to acute medical unit, looking at prevalence, trajectory, and outcomes:A protocol testing the feasibility and acceptability of the TYSON study

    Get PDF
    BackgroundFrailty and sarcopenia are common in older people and are associated with adverse outcomes including increased mortality and morbidity. It is unclear whether screening for frailty and sarcopenia would identify specific populations most at risk of poor outcomes during unplanned hospital admissions, which screening tools should be used and what the trajectory of both conditions are over the course of an admission. The TYSON study is an observational cohort study aiming to determine the prevalence, trajectory and outcomes associated with frailty and sarcopenia in different patient cohorts. This protocol tests the feasibility and acceptability of TYSON processes.ObjectivesTo determine in acutely admitted medical patients who are older adults: Primary: The feasibility and acceptability of frailty and sarcopenia assessments; Secondary: (1) Differences in community and hospital frailty assessments, as assessed by the medical team, the patient and elderly care physicians, (2) The dynamic changes in frailty and sarcopenia during a hospital admission, and patient outcomes; Exploratory: Inflammatory and metabolic mediators associated with frailty and sarcopenia.MethodsA single centre, prospective observational study including patients aged ≥ 65 years admitted to an acute medical unit. Frailty assessments include the Rockwood clinical frailty and e-frailty index. Sarcopenia assessments include the Bilateral Anterior Thigh Thickness (BATT) measurement. Each participant will be asked to complete 5 visits, at day 0, day 3, day 7, month 3 and month 6. Blood samples will be collected to explore inflammatory and metabolic markers associated with frailty and sarcopenia. The study and protocol have been ethically approved by the Health Research Authority (REC 20/WA/0263).DiscussionThe study will determine the feasibility and acceptability of frailty and sarcopenia assessments in an acute hospital setting, and inform on the prevalence, trajectory and associated outcomes of frailty and sarcopenia in this group of patients. An inflammatory and metabolic profile will be explored in frailty and sarcopenia

    European Expert Consensus on Practical Management of Specific Aspects of Parathyroid Disorders in Adults and in Pregnancy:Recommendations of the ESE Educational Program of Parathyroid Disorders

    Get PDF
    This European expert consensus statement provides recommendations for the diagnosis and management of primary hyperparathyroidism (PHPT), chronic hypoparathyroidism in adults (HypoPT), and parathyroid disorders in relation to pregnancy and lactation. Specified areas of interest and unmet needs identified by experts at the second ESE Educational Program of Parathyroid Disorders (PARAT) in 2019, were discussed during two virtual workshops in 2021, and subsequently developed by working groups with interest in the specified areas. PHPT is a common endocrine disease. However, its differential diagnosing to familial hypocalciuric hypercalcemia (FHH), the definition and clinical course of normocalcemic PHPT, and the optimal management of its recurrence after surgery represent areas of uncertainty requiring clarifications. HypoPT is an orphan disease characterized by low calcium concentrations due to insufficient PTH secretion, most often secondary to neck surgery. Prevention and prediction of surgical injury to the parathyroid glands are essential to limit the disease-related burden. Long-term treatment modalities including the place for PTH replacement therapy and the optimal biochemical monitoring and imaging surveillance for complications to treatment in chronic HypoPT, need to be refined. The physiological changes in calcium metabolism occurring during pregnancy and lactation modify the clinical presentation and management of parathyroid disorders in these periods of life. Modern interdisciplinary approaches to PHPT and HypoPT in pregnant and lactating women and their newborns children are proposed. The recommendations on clinical management presented here will serve as background for further educational material aimed for a broader clinical audience, and were developed with focus on endocrinologists in training

    A pilot observational study measuring acute sarcopenia in older colorectal surgery patients

    Get PDF
    Abstract Objective To explore variability in acute changes in muscle mass and function in older patients undergoing elective colorectal surgery, as well as feasibility of measures, in order to refine study processes to inform the protocol for a larger study. Results Results are presented for seven participants recruited to this pilot study. It is possible to perform serial measurements of bilateral anterior thigh thickness (BATT) and handgrip strength prior to, within 24 h of surgery, and 1 week postoperatively. Gait speed can be reliably measured preoperatively and at 1 week postoperatively. In this pilot study, BATT and gait speed declined at 1 week postoperatively (median BATT 4.17 cm, 3.47 cm, p = 0.028; median gait speed 0.89 m/s, 0.83 m/s, p = 0.043). Baseline hsCRP correlated with change in BATT (τb = 0.73, p = 0.04) and baseline DHEA-S correlated with change in gait speed (τb = 0.87, p = 0.02). This pilot study has assisted to refine the protocol for our larger study, which will further characterise these changes

    Macroprolactinoma causing VI, X, XII cranial nerve palsies nearly 30 years after initial treatment

    Get PDF
    A 48-year-old man was diagnosed with a large macroprolactinoma in 1982 treated with surgery, adjuvant radiotherapy and bromocriptine. Normal prolactin was achieved in 2005 but in 2009 it started rising. Pituitary MRIs in 2009, 2012, 2014 and 2015 were reported as showing empty pituitary fossa. Prolactin continued to increase (despite increasing bromocriptine dose). Trialling cabergoline had no effect (prolactin 191,380 mU/L). In January 2016, he presented with right facial weakness and CT head was reported as showing no acute intracranial abnormality. In late 2016, he was referred to ENT with hoarse voice; left hypoglossal and recurrent laryngeal nerve palsies were found. At this point, prolactin was 534,176 mU/L. Just before further endocrine review, he had a fall and CT head showed a basal skull mass invading the left petrous temporal bone. Pituitary MRI revealed a large enhancing mass within the sella infiltrating the clivus, extending into the left petrous apex and occipital condyle with involvement of the left Meckel’s cave, internal acoustic meatus, jugular foramen and hypoglossal canal. At that time, left abducens nerve palsy was also present. CT thorax/abdomen/pelvis excluded malignancy. Review of previous images suggested that this lesion had started becoming evident below the fossa in pituitary MRI of 2015. Temozolomide was initiated. After eight cycles, there is significant tumour reduction with prolactin 1565 mU/L and cranial nerve deficits have remained stable. Prolactinomas can manifest aggressive behaviour even decades after initial treatment highlighting the unpredictable clinical course they can demonstrate and the need for careful imaging review

    High throughput LC-MS/MS method for the simultaneous analysis of multiple vitamin D analytes in serum

    Get PDF
    Recent studies suggest that vitamin D-deficiency is linked to increased risk of common human health problems. To define vitamin D ‘status’ most routine analytical methods quantify one particular vitamin D metabolite, 25-hydroxyvitamin D3 (25OHD3). However, vitamin D is characterized by complex metabolic pathways, and simultaneous measurement of multiple vitamin D metabolites may provide a more accurate interpretation of vitamin D status. To address this we developed a high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyse multiple vitamin D analytes, with particular emphasis on the separation of epimer metabolites. A supportive liquid-liquid extraction (SLE) and LC-MS/MS method was developed to quantify 10 vitamin D metabolites as well as separation of an interfering 7α-hydroxy-4-cholesten-3-one (7αC4) isobar (precursor of bile acid), and validated by analysis of human serum samples. In a cohort of 116 healthy subjects, circulating concentrations of 25-hydroxyvitamin D3 (25OHD3), 3-epi-25-hydroxyvitamin D3 (3-epi-25OHD3), 24,25-dihydroxyvitamin D3 (24R,25(OH)(2)D3), 1,25-dihydroxyvitamin D3 (1α,25(OH)(2)D3), and 25-hydroxyvitamin D2 (25OHD2) were quantifiable using 220 μl of serum, with 25OHD3 and 24R,25(OH)(2)D3 showing significant seasonal variations. This high-throughput LC-MS/MS method provides a novel strategy for assessing the impact of vitamin D on human health and disease

    Glucocorticoids and 11β-HSD1 are major regulators of intramyocellular protein metabolism

    Get PDF
    The adverse metabolic effects of prescribed and endogenous glucocorticoid excess, ‘Cushing’s syndrome’, create a significant health burden. While skeletal muscle atrophy and resultant myopathy is a clinical feature, the molecular mechanisms underpinning these changes are not fully defined. We have characterized the impact of glucocorticoids upon key metabolic pathways and processes regulating muscle size and mass including: protein synthesis, protein degradation, and myoblast proliferation in both murine C2C12 and human primary myotube cultures. Furthermore, we have investigated the role of pre-receptor modulation of glucocorticoid availability by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in these processes. Corticosterone (CORT) decreased myotube area, decreased protein synthesis, and increased protein degradation in murine myotubes. This was supported by decreased mRNA expression of insulin-like growth factor (IGF1), decreased activating phosphorylation of mammalian target of rapamycin (mTOR), decreased phosphorylation of 4E binding protein 1 (4E-BP1), and increased mRNA expression of key atrophy markers including: atrogin-1, forkhead box O3a (FOXO3a), myostatin (MSTN), and muscle-ring finger protein-1 (MuRF1). These findings were endorsed in human primary myotubes, where cortisol also decreased protein synthesis and increased protein degradation. The effects of 11-dehydrocorticosterone (11DHC) (in murine myotubes) and cortisone (in human myotubes) on protein metabolism were indistinguishable from that of CORT/cortisol treatments. Selective 11β-HSD1 inhibition blocked the decrease in protein synthesis, increase in protein degradation, and reduction in myotube area induced by 11DHC/cortisone. Furthermore, CORT/cortisol, but not 11DHC/cortisone, decreased murine and human myoblast proliferative capacity. Glucocorticoids are potent regulators of skeletal muscle protein homeostasis and myoblast proliferation. Our data underscores the potential use of selective 11β-HSD1 inhibitors to ameliorate muscle-wasting effects associated with glucocorticoid excess

    25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression

    Get PDF
    Age-associated decline in muscle function represents a significant public health burden. Vitamin D-deficiency is also prevalent in aging subjects, and has been linked to loss of muscle mass and strength (sarcopenia), but the precise role of specific vitamin D metabolites in determining muscle phenotype and function is still unclear. To address this we quantified serum concentrations of multiple vitamin D metabolites, and assessed the impact of these metabolites on body composition/muscle function parameters, and muscle biopsy gene expression in a retrospective study of a cohort of healthy volunteers. Active serum 1,25-dihydroxyvitamin D3 (1α,25(OH)2D3), but not inactive 25-hydroxyvitamin D3 (25OHD3), correlated positively with measures of lower limb strength including power (rho = 0.42, p = 0.02), velocity (Vmax, rho = 0.40, p = 0.02) and jump height (rho = 0.36, p = 0.04). Lean mass correlated positively with 1α,25(OH)2D3 (rho = 0.47, p = 0.02), in women. Serum 25OHD3 and inactive 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) had an inverse relationship with body fat (rho = -0.30, p = 0.02 and rho = -0.33, p = 0.01, respectively). Serum 25OHD3 and 24,25(OH)2D3 were also correlated with urinary steroid metabolites, suggesting a link with glucocorticoid metabolism. PCR array analysis of 92 muscle genes identified vitamin D receptor (VDR) mRNA in all muscle biopsies, with this expression being negatively correlated with serum 25OHD3, and Vmax, and positively correlated with fat mass. Of the other 91 muscle genes analysed by PCR array, 24 were positively correlated with 25OHD3, but only 4 were correlated with active 1α,25(OH)2D3. These data show that although 25OHD3 has potent actions on muscle gene expression, the circulating concentrations of this metabolite are more closely linked to body fat mass, suggesting that 25OHD3 can influence muscle function via indirect effects on adipose tissue. By contrast, serum 1α,25(OH)2D3 has limited effects on muscle gene expression, but is associated with increased muscle strength and lean mass in women. These pleiotropic effects of the vitamin D ‘metabolome’ on muscle function indicate that future supplementation studies should not be restricted to conventional analysis of the major circulating form of vitamin D, 25OHD3

    Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism

    Get PDF
    BACKGROUND. Adrenal aldosterone excess is the most common cause of secondary hypertension and is associated with increased cardiovascular morbidity. However, adverse metabolic risk in primary aldosteronism extends beyond hypertension, with increased rates of insulin resistance, type 2 diabetes, and osteoporosis, which cannot be easily explained by aldosterone excess. METHODS. We performed mass spectrometry–based analysis of a 24-hour urine steroid metabolome in 174 newly diagnosed patients with primary aldosteronism (103 unilateral adenomas, 71 bilateral adrenal hyperplasias) in comparison to 162 healthy controls, 56 patients with endocrine inactive adrenal adenoma, 104 patients with mild subclinical, and 47 with clinically overt adrenal cortisol excess. We also analyzed the expression of cortisol-producing CYP11B1 and aldosterone-producing CYP11B2 enzymes in adenoma tissue from 57 patients with aldosterone-producing adenoma, employing immunohistochemistry with digital image analysis. RESULTS. Primary aldosteronism patients had significantly increased cortisol and total glucocorticoid metabolite excretion (all P < 0.001), only exceeded by glucocorticoid output in patients with clinically overt adrenal Cushing syndrome. Several surrogate parameters of metabolic risk correlated significantly with glucocorticoid but not mineralocorticoid output. Intratumoral CYP11B1 expression was significantly associated with the corresponding in vivo glucocorticoid excretion. Unilateral adrenalectomy resolved both mineralocorticoid and glucocorticoid excess. Postoperative evidence of adrenal insufficiency was found in 13 (29%) of 45 consecutively tested patients. CONCLUSION. Our data indicate that glucocorticoid cosecretion is frequently found in primary aldosteronism and contributes to associated metabolic risk. Mineralocorticoid receptor antagonist therapy alone may not be sufficient to counteract adverse metabolic risk in medically treated patients with primary aldosteronism

    The clinical profile and associated mortality in people with and without diabetes with Coronavirus disease 2019 on admission to acute hospital services

    Get PDF
    Introduction: To assess if in adults with COVID-19, whether those with diabetes and complications (DM+C) present with a more severe clinical profile and if that relates to increased mortality, compared to those with diabetes with no complications (DM-NC) and those without diabetes. Methods: Service-level data was used from 996 adults with laboratory confirmed COVID-19 who presented to the Queen Elizabeth Hospital Birmingham, UK, from March to June 2020. All individuals were categorized into DM+C, DM-NC, and non-diabetes groups. Physiological and laboratory measurements in the first 5 days after admission were collated and compared among groups. Cox proportional hazards regression models were used to evaluate associations between diabetes status and the risk of mortality. Results: Among the 996 individuals, 104 (10.4%) were DM+C, 295 (29.6%) DM-NC and 597 (59.9%) non-diabetes. There were 309 (31.0%) in-hospital deaths documented, 40 (4.0% of total cohort) were DM+C, 99 (9.9%) DM-NC and 170 (17.0%) non-diabetes. Individuals with DM+C were more likely to present with high anion gap/metabolic acidosis, features of renal impairment, and low albumin/lymphocyte count than those with DM-NC or those without diabetes. There was no significant difference in mortality rates among the groups: compared to individuals without diabetes, the adjusted HRs were 1.39 (95% CI 0.95–2.03, p = 0.093) and 1.18 (95% CI 0.90–1.54, p = 0.226) in DM+C and DM-C, respectively. Conclusions: Those with COVID-19 and DM+C presented with a more severe clinical and biochemical profile, but this did not associate with increased mortality in this study
    corecore