447 research outputs found

    Assessment of the level of farm mechanization technology utilization in poultry production in Kaduna state, nigeria

    Get PDF
    The study was conducted to assess the level of farm mechanization technology  utilization in poultry production in Chukun and Igabi Local Government Areas,  Kaduna State. Purposive sampling was used to select wards, multi–stage to choose villages and simple random to pick 140 responding farmers. Frequency distribution, percentages and means were the analytic tool used. Majority of the producers (75%) were aged forty years and below. All the producers had formal education. More than half of the producers (65%) were in poultry. About 57% were  non-members of cooperatives. The major source of technology (68%) was local market. Majority of the producers (79%) adopted hand tool technologies. A few of the producers (18%) adopted battery cage, (4%) feed mill and (4%) incubator. The benefits of the technologies were 36% proper use of space, 21% easy handling of large flocks, 18% decrease in cost of production. The constraints were 46% inadequate access to capital, 18% lack of electricity and water and 14% poor  extension contact. Majority of the producers adopted hand tools and were  non-members of cooperatives thus could not enjoy economies of scale. Provision of adequate fund to producers and formation of cooperative were recommended.Key words: Poultry, chicken, technology and production

    Bioinformatic analysis of WxL domain proteins

    Get PDF
    The WxL domain is found on the cell surface of many bacteria, most of which are commensal gut bacteria. Its functions are generally identified as being related to virulence and/or peptidoglycan attachment, but there is so far no clear function or structure for this domain. Here, a range of bioinformatics tools were used to clarify the structure and function. These indicate that WxL domains occur in cell surface-associated gene clusters that always contain a small WxL, large WxL and DUF916 domain; and that the small and large WxL proteins have distinct structure despite sharing two conserved WxL motifs. The two WxL motifs form a hydrophobic surface buried inside the protein. The likely function of the WxL domain is to attach to bacterial peptidoglycan, forming a platform to allow associated domains in the cluster to interact with host proteins

    DUF916 and DUF3324 in the WxL protein cluster bind to WxL and link bacterial and host surfaces

    Get PDF
    Bacterial WxL proteins contain peptidoglycan-binding WxL domains, which have a dual Trp-x-Leu motif and are involved in virulence. It was recently shown that WxL proteins occur in gene clusters, containing typically a small WxL protein (which in the mature protein consists only of a WxL domain), a large WxL protein (which contains a C-terminal WxL domain with N-terminal host-binding domains), and a conserved protein annotated as a Domain of Unknown Function (DUF). Here we analyze this DUF and show that it contains two tandem domains—DUF916 and DUF3324—which both have an IgG-like fold and together form a single functional unit, connected to a C-terminal transmembrane helix. DUF3324 is a stable domain, while DUF916 is less stable and is likely to require a stabilizing interaction with WxL. The protein is suggested to have an important role to bind and stabilize WxL on the peptidoglycan surface, via the DUF916 domain, and to bind to host cells via the DUF3324 domain. AlphaFold2 predicts that a β-hairpin strand from DUF916 inserts into WxL adjacent to its N-terminus. We therefore propose to rename the DUF916-DUF3324 pair as WxL Interacting Protein (WxLIP), with DUF916, DUF3324 and the transmembrane helix forming the first, second and third domains of WxLIP, which we characterize as peptidoglycan binding domain (PGBD), host binding domain (HBD), and transmembrane helix (TMH) respectively

    Characterisation of bacteriocins produced by Lactobacillus spp. isolated from the traditional Pakistani yoghurt and their antimicrobial activity against common foodborne pathogens

    Get PDF
    Lactic acid bacteria (LAB) are widely known for their probiotic activities for centuries. These bacteria synthesise some secretory proteinaceous toxins, bacteriocins, which help destroy similar or interrelated bacterial strains. This study was aimed at characterising bacteriocins extracted from Lactobacillus spp. found in yoghurt and assessing their bactericidal effect on foodborne bacteria. Twelve isolated Lactobacillus spp. were examined to produce bacteriocins by the organic solvent extraction method. Bacteriocins produced by two of these strains, Lactobacillus helveticus (BLh) and Lactobacillus plantarum (BLp), showed the most significant antimicrobial activity, especially against Staphylococcus aureus and Acinetobacter baumannii. Analysis of SDS-PAGE showed that L. plantarum and L. helveticus bacteriocins have a molecular weight of ~10 kDa and ~15 kDa, respectively. L. plantarum (BLp) bacteriocin was heat stable while L. helveticus (BLh) bacteriocin was heat labile. Both bacteriocins have shown activity at acidic pH. Exposure to a UV light enhances the activity of the BLh; however, it had negligible effects on the BLp. Different proteolytic enzymes confirmed the proteinaceous nature of both the bacteriocins. From this study, it was concluded that bacteriocin extracts from L. helveticus (BLh) can be considered a preferable candidate against foodborne pathogens as compared to L. plantarum (BLp). These partially purified bacteriocins should be further processed to attain purified product that could be useful for food spoilage and preservation purposes

    Exploring wide-parametric range for tool electrode selection based on surface characterization and machining rate employing powder-mixed electric discharge machining process for Ti6Al4V ELI

    Get PDF
    The titanium alloy Ti6Al4V ELI (grade 23) is widely used in biomedical industry because of its engineering attributes. However, it requires surface modifications and has processing challenges because it is difficult to machine nature. Therefore, powder-mixed electric discharge machining process is commonly applied to simultaneously machine the material and carry out surface treatment. The performance of the process is limited by both low cutting efficiency and the formation of a rough surface. In this regard, the current study evaluates SiC powder-mixed electric discharge machining of Ti6Al4V ELI using a range of tool materials such as copper, brass, graphite, and aluminum along with a comprehensive list of process parameters. The surface roughness parameters involving arithmetic roughness, the average peak-to-valley distance, and the highest peak-to-deepest valley distance along with material removal rate are comprehensively studied. Taguchi design of experiments L16 orthogonal array is used to study the process performance with parametric effect analysis, parametric significance analysis, and surface morphological analysis with a scanning electron microscope. Furthermore, the experimental results are optimized against a multi-response optimization matrix using grey relational analysis approach. An optimal compromise between surface attributes and cutting efficiency is identified by Al electrode, pulse current of 14 A, pulse on time of 75 µs, pulse off time of 75 µs, and negative polarity parametric conditions

    Assessment of proline function in higher plants under extreme temperatures

    Get PDF
    Climate change and abiotic stress factors are key players in crop losses worldwide. Among which, extreme temperatures (heat and cold) disturb plant growth and development, reduce productivity and, in severe cases, lead to plant death. Plants have developed numerous strategies to mitigate the detrimental impact of temperature stress. Exposure to stress leads to the accumulation of various metabolites, e.g. sugars, sugar alcohols, organic acids and amino acids. Plants accumulate the amino acid ‘proline’ in response to several abiotic stresses, including temperature stress. Proline abundance may result from de novo synthesis, hydrolysis of proteins, reduced utilization or degradation. Proline also leads to stress tolerance by maintaining the osmotic balance (still controversial), cell turgidity and indirectly modulating metabolism of reactive oxygen species. Furthermore, the crosstalk of proline with other osmoprotectants and signalling molecules, e.g. glycine betaine, abscisic acid, nitric oxide, hydrogen sulfide, soluble sugars, helps to strengthen protective mechanisms in stressful environments. Development of less temperature-responsive cultivars can be achieved by manipulating the biosynthesis of proline through genetic engineering. This review presents an overview of plant responses to extreme temperatures and an outline of proline metabolism under such temperatures. The exogenous application of proline as a protective molecule under extreme temperatures is also presented. Proline crosstalk and interaction with other molecules is also discussed. Finally, the potential of genetic engineering of proline-related genes is explained to develop ‘temperature-smart’ plants. In short, exogenous application of proline and genetic engineering of proline genes promise ways forward for developing ‘temperature-smart’ future crop plants.Research of FJC is supported by a European Regional Development Fund co-financed grant from the Ministry of Economy and Competitiveness/Science and Innovation (PID2019-10103924GB-I00), Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) (P18-FR-1359), Spain. This work was also supported by grants from Bill & Melinda Foundation (Tropical Legumes Project, OPP1114827), and Food Futures Institute of Murdoch University to RKV

    Evaluation of economic loss caused by Indian crested porcupine (Hystrix indica) in agricultural land of district Muzaffarabad, Azad Jammu and Kashmir, Pakistan

    Get PDF
    The Indian crested porcupine (Hystrix indica) is a vertebrate pest of agricultural lands and forest. The study was aimed to report the damage to local crops by the Indian crested porcupine (Hystrix indica) in the Muzaffarabad District. A survey was conducted to identify the porcupine-affected areas and assess the crop damage to the local farmers in district Muzaffarabad Azad Jammu and Kashmir (AJK) from May 2017 to October 2017. Around 19 villages were surveyed, and a sum of 191 semi-structured questionnaires was distributed among farmers. Crop damage was found highest in village Dhanni where a porcupine destroyed 175 Kg/Kanal of the crops. Regarding the total magnitude of crop loss, village Danna and Koomi kot were the most affected areas. More than half (51.8%) of the respondents in the study area suffered the economic loss within the range of 101-200,and(29.8, and (29.8%) of the people suffered losses in the range of 201-300 annually. Among all crops, maize (Zea mays) was found to be the most damaged crop ranging between 1-300 Kg annually. In the study area, porcupine also inflicted a lot of damages to some important vegetables, including spinach (Spinacia oleracea), potato (Solanum tuberosum) and onion (Allium cepa). It was estimated that, on average, 511Kg of vegetables are destroyed by porcupine every year in the agricultural land of Muzaffarabad. It was concluded that the Indian crested porcupine has a devastating effect on agriculture which is an important source of income and food for the local community. Developing an effective pest control strategy with the help of the local government and the Wildlife department could help the farmers to overcome this problem

    Probiotic properties of Lactobacillus helveticus and Lactobacillus plantarum isolated from traditional Pakistani yoghurt

    Get PDF
    Probiotic bacteria are of utmost importance owing to their extensive utilisation in dairy products and in the prevention of various intestinal diseases. The objective of this study was to assess the probiotic properties of bacteriocin-producing isolates of Lactobacillus helveticus and Lactobacillus plantarum isolated from traditional Pakistani yoghurt. In this study, ten bacteriocin-producing isolates were selected to screen for the probiotic property. The isolates showed resistance to acidic pH (6-6.5), bile salt (0.01-1%), and 1-7% NaCl salt and showed good growth at acidic pH and antibacterial activity against ten different foodborne pathogens. Interestingly, these isolates were proved to be effective against Actinobacter baumannii but least effective against Klebsiella pneumoniae and Pseudomonas aeruginosa. A few isolates were found to be resistant to some antibiotics like vancomycim, gentamycin, erythromycin, streptomycin, and clindamycin. Our results provide strong evidence in favour of traditional Pakistani yoghurts as a potential source of bacteriocin-producing bacteria with an added benefit of the probiotic property. Specifically, LBh5 was considered a good probiotic isolate as compared to other isolates used in the study. Further extensive research should be done on isolation and characterisation of probiotic isolates from local fermented foods, and then, these isolates should be used in the development of probiotic enriched food supplements in Pakistan

    Determinants of Carbon Emission Disclosures and UN Sustainable Development Goals: The Case of UK Higher Education Institutions

    Get PDF
    In recent years, organisational sustainability has become a topical issue in many institutional fields and a number of calls have been made to improve the disclosure of carbon information as part of sustainability efforts. This paper responds to these calls, chiefly examining the determinants of (CED) in the annual reports of UK higher education institutions (HEIs). It also aims to predict the relationship between the extent of CED and UN Sustainable Development Goals (SDGs) reporting by UK universities. We construct a disclosure index to capture the extent and type of CED in the annual reports of UK HEIs, finding that carbon reduction targets imposed by the Government, environmental audit, and the amount of actual carbon emissions are significant and positively associated with CED. However, we find no relationship between CED and the disclosure of SDGs. We argue that HEIs'. CED can be useful in developing relevant regulatory policies given the targets are carefully set. Our research has important implications for policymakers regarding carbon reduction targets and related non?mandatory guidance, as these can be utilised as an effective mechanism in increasing carbon emission disclosure voluntary CED that are integrated into SDG disclosures
    corecore