12 research outputs found

    Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modeling

    Get PDF
    Ferrihydrite, with a ‘‘two-line’’ x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20–50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model

    Realisation of magnetically and atomically abrupt half-metal/semiconductor interface: Co2FeSi0.5Al0.5/Ge(111)

    Get PDF
    Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors

    Materials and Molecular Modelling at the Exascale

    Get PDF
    Progression of computational resources towards exascale computing makes possible simulations of unprecedented accuracy and complexity in the fields of materials and molecular modelling (MMM), allowing high fidelity in silico experiments on complex materials of real technological interest. However, this presents demanding challenges for the software used, especially the exploitation of the huge degree of parallelism available on exascale hardware, and the associated problems of developing effective workflows and data management on such platforms. As part of the UKs ExCALIBUR exascale computing initiative, the UK-led MMM Design and Development Working Group has worked with the broad MMM community to identify a set of high priority application case studies which will drive future exascale software developments. We present an overview of these case studies, categorized by the methodological challenges which will be required to realize them on exascale platforms, and discuss the exascale requirements, software challenges and impact of each application area

    First-principles simulation: ideas, illustrations and the CASTEP code

    No full text
    First-principles simulation, meaning density-functional theory calculations with plane waves and pseudopotentials, has become a prized technique in condensed-matter theory. Here I look at the basics of the suject, give a brief review of the theory, examining the strengths and weaknesses of its implementation, and illustrating some of the ways simulators approach problems through a small case study. I also discuss why and how modern software design methods have been used in writing a completely new modular version of the CASTEP code

    First principles methods using CASTEP

    Get PDF
    The CASTEP code for first principles electronic structure calculations will be described. A brief, nontechnical overview will be given and some of the features and capabilities highlighted. Some features which are unique to CASTEP will be described and near-future development plans outlined

    Experimental and density functional study of Mn doped Bi₂Te₃ topological insulator

    No full text
    We present a nanoscale structural and density functional study of the Mn doped 3D topological insulator Bi2Te3. X-ray absorption near edge structure show that Mn has valency of nominally 2+. Extended x-ray absorption fine structure spectroscopy in combination with electron energy loss spectroscopy (EELS) shows that Mn is a substitutional dopant of Bi and Te and also resides in the van der Waals gap between the quintuple layers of Bi2Te3. Combination of aberration-corrected scanningtransmission electron microscopy and EELS show that Mn substitution of Te occurs in film regions with increased Mn concentration. First-principles calculations show that the Mn dopants favor octahedral sites and are ferromagnetically coupled
    corecore