94 research outputs found
The role of chemical structure on the magnetic and electronic properties of Co2FeAl0.5Si0.5/Si(111) interface
We show that Co2FeAl0.5Si0.5 film deposited on Si(111) has a single crystal structure and twin related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitu- tional nature of the intermixing. First-principles calculations performed using structural models based on the aberration corrected electron microscopy show that the increased Si incorporation in the film leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction. These effects can have significant detrimental role on the spin injection from the Co2FeAl0.5Si0.5 film into the Si substrate, besides the structural integrity of this junction
Controlling the half-metallicity of Heusler/Si(1 1 1) interfaces by a monolayer of Si–Co–Si
By using first-principles calculations we show that the spin-polarization reverses its sign at atomically abrupt interfaces between the half-metallic Co₂ (Fe,Mn)(Al,Si) and Si(1 1 1). This unfavourable spin-electronic configuration at the Fermi-level can be completely removed by introducing a Si–Co–Si monolayer at the interface. In addition, this interfacial monolayer shifts the Fermi-level from the valence band edge close to the conduction band edge of Si. We show that such a layer is energetically favourable to exist at the interface. This was further confirmed by direct observations of CoSi₂ nano-islands at the interface, by employing atomic resolution scanning transmission electron microscopy
Significant improvement of the Seebeck coefficient of Fe2VAl with antisite defects
In this work we present first principles study of the effect of stoichiometric pairs of antisite defects, V occupying Al site (VAl) and Al occupying V site (AlV), on the electronic structure and Seebeck coefficient of the Fe2VAlHeusler alloy. We show that introduction of these defects opens the bandgap of Fe2VAl, changing it from semi-metal to semiconductor, which results in an increase of the Seebeck coefficient for a range of doping concentrations and temperatures. We calculated Seebeck coefficients at different doping concentrations and temperatures shows good agreement with experimental data
Density functional theory in the solid state
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure–property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating inex nihilocrystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program.</jats:p
The effect of atomic structure on interface spin-polarization of half-metallic spin valves: Co<sub>2</sub>MnSi/Ag epitaxial interfaces
The Effect of Cobalt-Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys
In this work we present a theoretical study of the effect of disorder on spin polarisation at the Fermi level, and the disorder formation energies for Co2FexMn1−xSi (CFMS) alloys. The electronic calculations are based on density functional theory with a Hubbard U term. Chemical disorders studied consist of swapping Co with Fe/Mn and Co with Si; in all cases we found these are detrimental for spin polarisation, i.e., the spin polarisation not only decreases in magnitude, but also can change sign depending on the particular disorder. Formation energy calculation shows that Co–Si disorder has higher energies of formation in CFMS compared to Co2MnSi and Co2FeSi, with maximum values occurring for x in the range 0.5–0.75. Cross-sectional structural studies of reference Co2MnSi, Co2Fe0.5Mn0.5Si, and Co2FeSi by Z-contrast scanning transmission electron microscopy are in qualitative agreement with total energy calculations of the disordered structures
Chemically Functionalized Penta-Graphene for Electronic Device Applications: Journey from Theoretical Prediction to Practical Implementation
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment
A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the νe component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(Eν) for charged-current νe absorption on argon. In the context of a simulated extraction of supernova νe spectral parameters from a toy analysis, we investigate the impact of σ(Eν) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(Eν) must be substantially reduced before the νe flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires σ(Eν) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(Eν). A direct measurement of low-energy νe-argon scattering would be invaluable for improving the theoretical precision to the needed level
- …
