257 research outputs found

    Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modeling

    Get PDF
    Ferrihydrite, with a ‘‘two-line’’ x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20–50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model

    Portable Acceleration of Materials Modeling Software : CASTEP, GPUs, and OpenACC

    Get PDF
    In this article, we present work to port the CASTEP first-principles materials modeling program to accelerators using open accelerator (OpenACC). We discuss the challenges and opportunities presented by graphical processing units (GPU) architectures in particular, and the approach taken in the CASTEP OpenACC port. Whilst the port is still under active development, early performance results show that significant speed-ups may be gained, particularly for materials simulations using so-called "nonlocal functionals,"where speed-ups can exceed a factor of ten

    Many-body renormalization of forces in f-electron materials

    Get PDF
    We present the implementation of dynamical mean-field theory (DMFT) in the CASTEP ab initio code. We explain in detail the theoretical framework for DFT+DMFT and we demonstrate our implementation for three strongly-correlated systems with f -shell electrons: Îł -cerium, cerium sesquioxide Ce2O3, and samarium telluride SmTe by using a Hubbard I solver. We find very good agreement with previous benchmark DFT+DMFT calculations of cerium compounds, while for SmTe we show the improved agreement with the experimental structural parameters as compared with LDA. Our implementation works equally well for both norm-conserving and ultrasoft pseudopotentials, and we apply it to the calculation of total energy, bulk modulus, equilibrium volumes, and internal forces in the two cerium compounds. In Ce2O3 we report a dramatic reduction of the internal forces acting on coordinates not constrained by unit cell symmetries. This reduction is induced by the many-body effects, which can only be captured at the DMFT level. In addition, we derive an alternative form for treating the high-frequency tails of the Green function in Matsubara frequency summations. Our treatment allows a reduction in the bias when calculating the correlation energies and occupation matrices to high precision

    DL_MG : A Parallel Multigrid Poisson and Poisson–Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution

    Get PDF
    The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential—a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson–Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10^9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein–ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver

    Realisation of magnetically and atomically abrupt half-metal/semiconductor interface: Co2FeSi0.5Al0.5/Ge(111)

    Get PDF
    Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors

    Off-the-shelf DFT-DISPersion methods : Are they now “on-trend” for organic molecular crystals?

    Get PDF
    Organic molecular crystals contain long-range dispersion interactions that can be challenging for solid-state methods such as density functional theory (DFT) to capture, and in some industrial sectors are overlooked in favor of classical methods to calculate atomistic properties. Hence, this publication addresses the critical question of whether dispersion corrected DFT calculations for organic crystals can reproduce the structural and energetic trends seen from experiment, i.e., whether the calculations can now be said to be truly “on-trend.” In this work, we assess the performance of three of the latest dispersion-corrected DFT methods, in calculating the long-range, dispersion energy: the pairwise methods of D3(0) and D3(BJ) and the many-body dispersion method, MBD@rsSCS. We calculate the energetics and optimized structures of two homologous series of organic molecular crystals, namely, carboxylic acids and amino acids. We also use a classical force field method (using COMPASS II) and compare all results to experimental data where possible. The mean absolute error in lattice energies is 9.59 and 343.85 kJ/mol (COMPASS II), 10.17 and 16.23 kJ/mol (MBD@rsSCS), 10.57 and 18.76 kJ/mol [D3(0)], and 8.52 and 14.66 kJ/mol [D3(BJ)] for the carboxylic acids and amino acids, respectively. MBD@rsSCS produces structural and energetic trends that most closely match experimental trends, performing the most consistently across the two series and competing favorably with COMPASS II

    Simultaneous Prediction of the Magnetic and Crystal Structure of Materials Using a Genetic Algorithm

    Get PDF
    We introduce a number of extensions and enhancements to a genetic algorithm for crystal structure prediction, to make it suitable to study magnetic systems. The coupling between magnetic properties and crystal structure means that it is essential to take a holistic approach, and we present for the first time, a genetic algorithm that performs a simultaneous global optimisation of both magnetic structure and crystal structure. We first illustrate the power of this approach on a novel test system—the magnetic Lennard–Jones potential—which we define. Then we study the complex interface structures found at the junction of a Heusler alloy and a semiconductor substrate as found in a proposed spintronic device and show the impact of the magnetic interface structure on the device performance

    Cr2AlN and the search for the highest temperature superconductor in the M2AX family

    Get PDF
    We have developed a high-throughput computational method to predict the superconducting transition temperature in stable hexagonal M 2AX phases, and applied it to all the known possible choices for M (M: Sc, Ti, V, Cr, Mn, Fe, Y, Zr, Nb, Mo, Lu, Hf and Ta). We combine this with the best candidates for A (A: Al, Cu, Ge and Sn ) and X (X: C and N) from our previous work, and predict T c for 60 M2AX-phase materials, 53 of which have never been studied before. From all of these, we identify Cr2AlN as the best candidate for the highest T c , and confirm its high T c with more detailed density functional theory electron-phonon coupling calculations. Our detailed calculations predict Tc = 14.8 K for Cr2AlN, which is significantly higher than any Tc value known or predicted for any material in the M2AX family to date
    • …
    corecore