746 research outputs found

    Epitaxial growth of Cu (001) on Si (001): Mechanisms of orientation development and defect morphology

    Get PDF
    We describe the evolution of microstructure during ultrahigh vacuum ion beam sputter deposition of Cu (001) at room temperature on hydrogen-terminated Si (001). In situ reflection high energy electron diffraction indicates growth of an epitaxial Cu (001) film on Si (001) with the intensity of the Bragg rods sharpening during 5–20 nm of Cu film growth. Post-growth x-ray diffraction indicates the Cu film has a mosaic spread of (001) textures of about ±2° and that a small fraction (0.001–0.01) is of (111) textures. High-resolution transmission electron microscopy shows an abrupt Cu/Si interface with no interfacial silicide, and reveals an evolution in texture with Cu thickness so as to reduce the mosaic spread about (001). Moiré contrast suggests a nearly periodic elastic strain field extending into the Cu and Si at the interface. Other aspects of film growth which are critical to epitaxy are also discussed

    An Evaluation on the Compliance to Safety Helmet Usage among Motorcyclists in Batu Pahat, Johor

    Get PDF
    This paper presents methods on how to determine the level of practice of usage of safetyhelmet among motorcyclist in Batu Pahat and to identify the target group who are most likelyto violate the safety helmet law among. A questionnaire study was carried out in urban andrural Batu Pahat. A total of 185 respondents were interviewed and the data was analyzed usingthe statistics. Six variables were found to be significant at percent level (p<0.05): gender,education level, type of safety helmet, distance of travel, riding experience and location oftravel. Practice of safety helmet usage among motorcyclist in Batu Pahat was found to behigher for female riders, higher educated riders, full shell helmet users, travelling at a distanceof 1 km to 10 km, riders having good practice and riders in the town area. All the variablesabove are contributing factors in the practice of helmet usage among motorcyclists in BatuPahat. Subsequently, the road safety programs and enforcement teams should be more focusedon male riders, rider with low education levels, half shell helmet riders, 10 km and belowdistance, riding experience for 10 years above and rural riders based on their lower practice ofusing safety helmet

    A Hybrid Analytic Network Process and Artificial Neural Network (ANP-ANN) model for urban Earthquake vulnerability assessment

    Get PDF
    © 2018 by the authors. Vulnerability assessment is one of the prerequisites for risk analysis in disaster management. Vulnerability to earthquakes, especially in urban areas, has increased over the years due to the presence of complex urban structures and rapid development. Urban vulnerability is a result of human behavior which describes the extent of susceptibility or resilience of social, economic, and physical assets to natural disasters. The main aim of this paper is to develop a new hybrid framework using Analytic Network Process (ANP) and Artificial Neural Network (ANN) models for constructing a composite social, economic, environmental, and physical vulnerability index. This index was then applied to Tabriz City, which is a seismic-prone province in the northwestern part of Iran with recurring devastating earthquakes and consequent heavy casualties and damages. A Geographical Information Systems (GIS) analysis was used to identify and evaluate quantitative vulnerability indicators for generating an earthquake vulnerability map. The classified and standardized indicators were subsequently weighed and ranked using an ANP model to construct the training database. Then, standardized maps coupled with the training site maps were presented as input to aMultilayer Perceptron (MLP) neural network for producing an Earthquake VulnerabilityMap (EVM). Finally, an EVMwas produced for Tabriz City and the level of vulnerability in various zones was obtained. South and southeast regions of Tabriz City indicate low to moderate vulnerability, while some zones of the northeastern tract are under critical vulnerability conditions. Furthermore, the impact of the vulnerability of Tabriz City on population during an earthquake was included in this analysis for risk estimation. A comparison of the result produced by EVM and the Population Vulnerability (PV) of Tabriz City corroborated the validity of the results obtained by ANP-ANN. The findings of this paper are useful for decision-makers and government authorities to obtain a better knowledge of a city's vulnerability dimensions, and to adopt preparedness strategies in the future for Tabriz City. The developed hybrid framework of ANP and ANN Models can easily be replicated and applied to other urban regions around the world for sustainability and environmental management

    Synthesis of Mixed Ligand Complexes of M(II) Dithiocarbamato Derivative and 2,2'-bipyridyl and Study their Cytotoxic Effect Against HepG2 Cell Line in vitro

    Get PDF
    Mixed ligand of Co and Ni (II) complexes were prepared from [5-(p-nitrophenyl)-4/-phenyl-1,2,4-triazole-3-dithiocarbamato hydrazide](TRZ.DTC) as primary ligand and 2,2'-bipyridyl (bipy) as a co-ligand with metal salts. These complexes were analytically and spectroscopically characterized in solid state by elemental analyses, flame atomic absorption, magnetic susceptibility and molar conductance measurements, as well as by UV–Vis and FTIR spectroscopy. Infrared, ultra violet spectra reveal a bidentate coordination of the two ligands with metal ions 1:1:1 mole ratio. Room temperature magnetic moments and solid reflectance spectra data indicate paramagnetic complexes with five-coordinate square pyramidal geometry for nickel (II) complex, while six-coordinate octahedral geometry for cobalt (II) complex in solid state. The mixed ligand and its respective complexes were screened for cytotoxicity assay on human HepG2 cell line using cis-Pt drug as a control positive following the cell culture method for 3 days after treatment with the tested compounds using eight different concentrations. The bioassay results showed good inhibition activity of these synthetic compounds especially Ni (II) complex on selected cell lines comparable with standard drug

    Application of multi-sensor satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland

    Get PDF
    © 2018 by the authors. Geological mapping and mineral exploration programs in the High Arctic have been naturally hindered by its remoteness and hostile climate conditions. The Franklinian Basin in North Greenland has a unique potential for exploration of world-class zinc deposits. In this research, multi-sensor remote sensing satellite data (e.g., Landsat-8, Phased Array L-band Synthetic Aperture Radar (PALSAR) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)) were used for exploring zinc in the trough sequences and shelf-platform carbonate of the Franklinian Basin. A series of robust image processing algorithms was implemented for detecting spatial distribution of pixels/sub-pixels related to key alteration mineral assemblages and structural features that may represent potential undiscovered Zn-Pb deposits. Fusion of Directed Principal Component Analysis (DPCA) and Independent Component Analysis (ICA) was applied to some selected Landsat-8 mineral indices for mapping gossan, clay-rich zones and dolomitization. Major lineaments, intersections, curvilinear structures and sedimentary formations were traced by the application of Feature-oriented Principal Components Selection (FPCS) to cross-polarized backscatter PALSAR ratio images. Mixture Tuned Matched Filtering (MTMF) algorithm was applied to ASTER VNIR/SWIR bands for sub-pixel detection and classification of hematite, goethite, jarosite, alunite, gypsum, chalcedony, kaolinite, muscovite, chlorite, epidote, calcite and dolomite in the prospective targets. Using the remote sensing data and approaches, several high potential zones characterized by distinct alteration mineral assemblages and structural fabrics were identified that could represent undiscovered Zn-Pb sulfide deposits in the study area. This research establishes a straightforward/cost-effective multi-sensor satellite-based remote sensing approach for reconnaissance stages of mineral exploration in hardly accessible parts of the High Arctic environments

    An Optical Flow Measurement Technique based on Continuous Wavelet Transform

    Get PDF
    Flow measurement underwater oil leak is a challenging problem, due to the complex nature of flow dynamics. Oil jet flow associated with a multi-scale coherent structure in both space and time direction. Optical plume velocimetry (OPV) was developed by (Crone, McDuff, and Wilcock, 2008), and it was the most accurate technique that used for oil leak flow measurement. Despite its better estimation, the OPV measured the oil flow rate with high uncertainty of 21%. This is due to the multi-scale phenomena of oil flow, as well as the limited accuracy of direct cross correlation (DCC) typically used by OPV. This paper proposed a novel technique that considers the multi-scale property of turbulence in flow measurement. The proposed technique is based on continuous wavelet transform and estimates the flow using the following steps: Decomposition of turbulent flow signal by using continuous wavelet transform (CWT), correlation coefficient estimation in which Fast Fourier Transform (FFT) algorithm was used, interpolation and peak detection for the estimated correlation coefficients, and finally, the velocity field estimation. In order to validate the CWT-based technique, a turbulent buoyant jet, which has a similar flow-type of oil jet was experimentally simulated. Then, the CWT-based technique was applied to measure the jet flow, and the outcomes of the technique was compared to the experimental results. As a result, utilizing a smaller number of wavelet scales lead in better flow measurement as compared to the use of larger scales. CWT-based technique was accurately estimated the jet flow rate with standard error of 0.15 m/s, and outperformed the classical algorithms, including FFT, and DCC algorithms, which were measured with error of 3.65 m/s and 4.53 m/s respectively

    Programmable Heisenberg Interactions Between Floquet Qubits

    Get PDF
    The trade-off between robustness and tunability is a central challenge in the pursuit of quantum simulation and fault-tolerant quantum computation. In particular, quantum architectures are often designed to achieve high coherence at the expense of tunability. Many current qubit designs have fixed energy levels and consequently limited types of controllable interactions. Here by adiabatically transforming fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ Heisenberg interaction with fully adjustable anisotropy. This interaction model can act as the primitive for an expressive set of quantum operations, but is also the basis for quantum simulations of spin systems. To illustrate the robustness and versatility of our Floquet protocol, we tailor the Heisenberg Hamiltonian and implement two-qubit iSWAP, CZ and SWAP gates with good estimated fidelities. In addition, we implement a Heisenberg interaction between higher energy levels and employ it to construct a three-qubit CCZ gate, also with a competitive fidelity. Our protocol applies to multiple fixed-frequency high-coherence platforms, providing a collection of interactions for high-performance quantum information processing. It also establishes the potential of the Floquet framework as a tool for exploring quantum electrodynamics and optimal control

    Application of Landsat-8, Sentinel-2, ASTER and Worldview-3 spectral imagery for exploration of carbonate-hosted Pb-Zn deposits in the Central Iranian Terrane (CIT)

    Get PDF
    © 2020 by the authors. The exploration of carbonate-hosted Pb-Zn mineralization is challenging due to the complex structural-geological settings and costly using geophysical and geochemical techniques. Hydrothermal alteration minerals and structural features are typically associated with this type of mineralization. Application of multi-sensor remote sensing satellite imagery as a fast and inexpensive tool for mapping alteration zones and lithological units associated with carbonate-hosted Pb-Zn deposits is worthwhile. Multiple sources of spectral data derived fromdifferent remote sensing sensors can be utilized for detailed mapping a variety of hydrothermal alteration minerals in the visible near infrared (VNIR) and the shortwave infrared (SWIR) regions. In this research, Landsat-8, Sentinel-2, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and WorldView-3 (WV-3) satellite remote sensing sensors were used for prospecting Zn-Pb mineralization in the central part of the Kashmar-Kerman Tectonic Zone (KKTZ), the Central Iranian Terrane (CIT). The KKTZ has high potential for hosting Pb-Zn mineralization due to its specific geodynamic conditions (folded and thrust belt) and the occurrence of large carbonate platforms. For the processing of the satellite remote sensing datasets, band ratios and principal component analysis (PCA) techniques were adopted and implemented. Fuzzy logic modeling was applied to integrate the thematic layers produced by image processing techniques for generating mineral prospectivity maps of the study area. The spatial distribution of iron oxide/hydroxides, hydroxyl-bearing and carbonate minerals and dolomite were mapped using specialized band ratios and analyzing eigenvector loadings of the PC images. Subsequently, mineral prospectivity maps of the study area were generated by fusing the selected PC thematic layers using fuzzy logic modeling. The most favorable/prospective zones for hydrothermal ore mineralizations and carbonate-hosted Pb-Zn mineralization in the study region were particularly mapped and indicated. Confusion matrix, field reconnaissance and laboratory analysis were carried out to verify the occurrence of alteration zones and highly prospective locations of carbonate-hosted Pb-Zn mineralization in the study area. Results indicate that the spectral data derived from multi-sensor remote sensing satellite datasets can be broadly used for generating remote sensing-based prospectivity maps for exploration of carbonate-hosted Pb-Zn mineralization in many metallogenic provinces around the world

    Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation

    Get PDF
    Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0–50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer
    corecore