20 research outputs found

    Soluble Triggering Receptor Expressed on Myeloid Cells 1 Is Released in Patients with Stable Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is increasingly recognized as a systemic disease that is associated with increased serum levels of markers of systemic inflammation. The triggering receptor expressed on myeloid cells 1 (TREM-1) is a recently identified activating receptor on neutrophils, monocytes, and macrophage subsets. TREM-1 expression is upregulated by microbial products such as the toll-like receptor ligand lipoteichoic acid of Gram-positive or lipopolysaccharides of Gram-negative bacteria. In the present study, sera from 12 COPD patients (GOLD stages I–IV, FEV1 51 ± 6%) and 10 healthy individuals were retrospectively analyzed for soluble TREM-1 (sTREM-1) using a newly developed ELISA. In healthy subjects, sTREM-1 levels were low (median 0.25 ng/mL, range 0–5.9 ng/mL). In contrast, levels of sTREM-1 in sera of COPD patients were significantly increased (median 11.68 ng/mL, range 6.2–41.9 ng/mL, P<.05). Furthermore, serum levels of sTREM-1 showed a significant negative correlation with lung function impairment. In summary, serum concentrations of sTREM-1 are increased in patients with COPD. Prospective studies are warranted to evaluate the relevance of sTREM-1 as a potential marker of the disease in patients with COPD

    Kostimulatorische Rezeptoren in der Aktivierung humaner neutrophiler Granulozyten

    No full text
    Neutrophile Granulozyten spielen eine wichtige Rolle in der ersten Phase der Inflammation. Sie infiltrieren den Infektionsort um den eingedrungenen Erreger zu bekämpfen und Ihre Effektor Funktion auszuführen. Neben den Mustererkennenden Rezeptoren des angeborenen Immunsystems (pattern recognition receptors) werden weitere Rezeptoren auf der Oberfläche von neutrophilen Granulozyten exprimiert, welche zur Aktivierung der Zelle beitragen können. In dieser arbeit wurden der Herpes Virus Entry Mediator (HVEM) und Triggering Receptor expressed on Myeloid Cells-1 (TREM-1) auf neutrophilen untersucht. Für HVEM konnte eine synergistische Aktivierung von neutrophilen Granulozyten im Zusammenspiel mit Toll like Rezeptor (TLR) Liganden nachgewiesen werden. Für TREM-1 konnte ein Vorhandensein eines Liganden auch Thrombozyten beschrieben. Es wurden weiterhin Mechanismen untersucht und beschrieben, welche für die synergistische Aktivierung von neutrophilen Granulozyten verantwortlich sind, welche nach TREM-1 und TLR Stimulation erkennbar ist.Polymorphnuclear neutrophil granulocytes (PMN) are of importance in the first line of defense in the inflammatory response. They infiltrate the side of infection and exert their Effektor function against pathogens. Beside the pattern recognition receptors of the innate immun system PMN also express receptors on their surface which contributes to the activation of PMN. Examined were the Herpes Virus Entry Mediator (HVEM) and Triggering Receptor Expressed on Myeloid cells 1 (TREM-1). Stimulation of HVEM was co stimulatory in the activation of PMN together with Toll like Receptor (TLR) ligands. A TREM-1 ligand was described to be expressed on platelets and mechanisms for the synergy in activation of PMN after TREM-1 and TLR stimulation could be described

    Inhibition of Bruton’s tyrosine kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease

    No full text
    Anti-CD20-mediated B-cell depletion effectively reduces acute multiple sclerosis (MS) flares. Recent data shows that antibody-mediated extinction of B cells as a lasting immune suppression, harbors the risk of developing humoral deficiencies over time. Accordingly, more selective, durable and reversible B-cell-directed MS therapies are needed. We here tested inhibition of Bruton's tyrosine kinase (BTK), an enzyme centrally involved in B-cell receptor signaling, as the most promising approach in this direction. Using mouse models of MS, we determined that evobrutinib, the first BTK inhibiting molecule being developed, dose-dependently inhibited antigen-triggered activation and maturation of B cells as well as their release of pro-inflammatory cytokines. Most importantly, evobrutinib treatment functionally impaired the capacity of B cells to act as antigen-presenting cells for the development of encephalitogenic T cells, resulting in a significantly reduced disease severity in mice. In contrast to anti-CD20, BTK inhibition silenced this key property of B cells in MS without impairing their frequency or functional integrity. In conjunction with a recent phase II trial reporting that evobrutinib is safe and effective in MS, our mechanistic data highlight therapeutic BTK inhibition as a landmark towards selectively interfering with MS-driving B-cell properties

    A role for Toll-like receptor mediated signals in neutrophils in the pathogenesis of the anti-phospholipid syndrome

    No full text
    The anti-phospholipid syndrome (APS) is characterized by recurrent thrombosis and occurrence of anti-phospholipid antibodies (aPL). aPL are necessary, but not sufficient for the clinical manifestations of APS. Growing evidence suggests a role of innate immune cells, in particular polymorphonuclear neutrophils (PMN) and Toll-like receptors (TLR) to be additionally involved. aPL activate endothelial cells and monocytes through a TLR4-dependent signalling pathway. Whether this is also relevant for PMN in a similar way is currently not known. To address this issue, we used purified PMN from healthy donors and stimulated them in the presence or absence of human monoclonal aPL and the TLR4 agonist LPS monitoring neutrophil effector functions, namely the oxidative burst, phagocytosis, L-Selectin shedding and IL-8 production. aPL alone were only able to induce minor activation of PMN effector functions at high concentrations. However, in the additional presence of LPS the activation threshold was markedly lower indicating a synergistic activation pathway of aPL and TLR in PMN. In summary, our results indicate that PMN effector functions are directly activated by aPL and boosted by the additional presence of microbial products. This highlights a role for PMN as important innate immune effector cells that contribute to the pathophysiology of APS

    Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies : innate and adaptive immune responses

    No full text
    Activation of dendritic cells by ligands for Toll-like receptors (TLR) is a crucial event in the initiation of innate and adaptive immune responses. Several classes of TLR ligands have been identified that interact with distinct members of the TLR-family. TLR4 ligands include lipopolysaccharide derived from different Gram-negative bacteria and viral proteins. Recent reports have demonstrated the TLR-mediated activation of dendritic cells by heat shock proteins (HSPs). However, doubts were raised as to what extent this effect was due to lipopolysaccharide contaminations of the HSP preparations. We re-examined this phenomenon using Gp96 or its N-terminal domain, nominally endotoxin-free ( or =50 microg/ml) but not at lower concentrations. However, preincubation of low amounts of Gp96 with TLR2 and TLR4 ligands at concentrations unable to activate dendritic cells by themselves results in the production of high levels of proinflammatory cytokines, up-regulation of activation markers, and amplification of T cell activation. Our results provide significant new insights into the mechanism of HSP-mediated dendritic cell activation and present a new function of HSPs in the amplification of dendritic cell activation by bacterial products and induction of adaptive immune responses

    Identification of pharmacodynamic biomarker hypotheses through literature analysis with IBM Watson.

    No full text
    BackgroundPharmacodynamic biomarkers are becoming increasingly valuable for assessing drug activity and target modulation in clinical trials. However, identifying quality biomarkers is challenging due to the increasing volume and heterogeneity of relevant data describing the biological networks that underlie disease mechanisms. A biological pathway network typically includes entities (e.g. genes, proteins and chemicals/drugs) as well as the relationships between these and is typically curated or mined from structured databases and textual co-occurrence data. We propose a hybrid Natural Language Processing and directed relationships-based network analysis approach using IBM Watson for Drug Discovery to rank all human genes and identify potential candidate biomarkers, requiring only an initial determination of a specific target-disease relationship.MethodsThrough natural language processing of scientific literature, Watson for Drug Discovery creates a network of semantic relationships between biological concepts such as genes, drugs, and diseases. Using Bruton's tyrosine kinase as a case study, Watson for Drug Discovery's automatically extracted relationship network was compared with a prominent manually curated physical interaction network. Additionally, potential biomarkers for Bruton's tyrosine kinase inhibition were predicted using a matrix factorization approach and subsequently compared with expert-generated biomarkers.ResultsWatson's natural language processing generated a relationship network matching 55 (86%) genes upstream of BTK and 98 (95%) genes downstream of Bruton's tyrosine kinase in a prominent manually curated physical interaction network. Matrix factorization analysis predicted 11 of 13 genes identified by Merck subject matter experts in the top 20% of Watson for Drug Discovery's 13,595 ranked genes, with 7 in the top 5%.ConclusionTaken together, these results suggest that Watson for Drug Discovery's automatic relationship network identifies the majority of upstream and downstream genes in biological pathway networks and can be used to help with the identification and prioritization of pharmacodynamic biomarker evaluation, accelerating the early phases of disease hypothesis generation
    corecore