10,870 research outputs found

    Calibration System with Cryogenically-Cooled Loads for CMB Polarization Detectors

    Full text link
    We present a novel system to calibrate millimeter-wave polarimeters for CMB polarization measurements. This technique is an extension of the conventional metal mirror rotation approach, however it employs cryogenically-cooled blackbody absorbers. The primary advantage of this system is that it can generate a slightly polarized signal (∼100\sim100 mK) in the laboratory; this is at a similar level to that measured by ground-based CMB polarization experiments observing a ∼\sim 10 K sky. It is important to reproduce the observing condition in the laboratry for reliable characterization of polarimeters before deployment. In this paper, we present the design and principle of the system, and demonstrate its use with a coherent-type polarimeter used for an actual CMB polarization experiment. This technique can also be applied to incoherent-type polarimeters and it is very promising for the next-generation CMB polarization experiments.Comment: 7 pages, 9 figures Submitted to RS

    Innovative Demodulation Scheme for Coherent Detectors in CMB Experiments

    Full text link
    We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two- point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.Comment: 3 pages, 4 figure

    Deformation theory of objects in homotopy and derived categories II: pro-representability of the deformation functor

    Get PDF
    This is the second paper in a series. In part I we developed deformation theory of objects in homotopy and derived categories of DG categories. Here we extend these (derived) deformation functors to an appropriate bicategory of artinian DG algebras and prove that these extended functors are pro-representable in a strong sense.Comment: Alexander Efimov is a new co-author of this paper. New material was added: A_{\infty}-structures, Maurer-Cartan theory for A_{\infty}-algebras. This allows us to strengthen our main results on the pro-representability of pseudo-functors coDEF_{-} and DEF_{-}. We also obtain an equivalence between homotopy and derived deformation functors under weaker hypothese

    Moment equations for chemical reactions on interstellar dust grains

    Get PDF
    While most chemical reactions in the interstellar medium take place in the gas phase, those occurring on the surfaces of dust grains play an essential role. Chemical models based on rate equations including both gas phase and grain surface reactions have been used in order to simulate the formation of chemical complexity in interstellar clouds. For reactions in the gas phase and on large grains, rate equations, which are highly efficient to simulate, are an ideal tool. However, for small grains under low flux, the typical number of atoms or molecules of certain reactive species on a grain may go down to order one or less. In this case the discrete nature of the opulations of reactive species as well as the fluctuations become dominant, thus the mean-field approximation on which the rate equations are based does not apply. Recently, a master equation approach, that provides a good description of chemical reactions on interstellar dust grains, was proposed. Here we present a related approach based on moment equations that can be obtained from the master equation. These equations describe the time evolution of the moments of the distribution of the population of the various chemical species on the grain. An advantage of this approach is the fact that the production rates of molecular species are expressed directly in terms of these moments. Here we use the moment equations to calculate the rate of molecular hydrogen formation on small grains. It is shown that the moment equation approach is efficient in this case in which only a single reactive specie is involved. The set of equations for the case of two species is presented and the difficulties in implementing this approach for complex reaction networks involving multiple species are discussed.Comment: 12 pages, submitted for publication in A&

    The Metal-Insulator Transition in the Doubly Degenerate Hubbard Model

    Full text link
    A systematic study has been made on the metal-insulator (MI) transition of the doubly degenerate Hubbard model (DHM) in the paramagnetic ground state, by using the slave-boson mean-field theory which is equivalent to the Gutzwiller approximation (GA). For the case of infinite electron-electron interactions, we obtain the analytic solution, which becomes exact in the limit of infinite spatial dimension. On the contrary, the finite-interaction case is investigated by numerical methods with the use of the simple-cubic model with the nearest-neighbor hopping. The mass-enhancement factor, ZZ, is shown to increase divergently as one approaches the integer fillings (N=1,2,3N = 1, 2, 3), at which the MI transition takes place, NN being the total number of electrons. The calculated NN dependence of ZZ is compared with the observed specific-heat coefficient, γ\gamma, of Sr1−xLaxTiO3Sr_{1-x}La_xTiO_3 which is reported to significantly increase as xx approaches unity.Comment: Latex 16 pages, 10 ps figures included, published in J. Phys. Soc. Jpn. with some minor modifications. ([email protected]
    • …
    corecore