27 research outputs found

    Calcium spikes, waves and oscillations in a large, patterned epithelial tissue

    Get PDF
    While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-rang

    Nanoparticle mediated delivery and small molecule triggered activation of proteins in the nucleus

    Get PDF
    Protein transfection is a versatile tool to study or manipulate cellular processes and also shows great therapeutic potential. However, the repertoire of cost effective techniques for efficient and minimally cytotoxic delivery remains limited. Mesoporous silica nanoparticles (MSNs) are multifunctional nanocarriers for cellular delivery of a wide range of molecules, they are simple and economical to synthesize and have shown great promise for protein delivery. In this work we present a general strategy to optimize the delivery of active protein to the nucleus. We generated a bimolecular Venus based optical sensor that exclusively detects active and bioavailable protein for the performance of multi-parameter optimization of protein delivery. In conjunction with cell viability tests we maximized MSN protein delivery and biocompatibility and achieved highly efficient protein transfection rates of 80%. Using the sensor to measure live-cell protein delivery kinetics, we observed heterogeneous timings within cell populations which could have a confounding effect on function studies. To address this problem we fused a split or dimerization dependent protein of interest to chemically induced dimerization (CID) components, permitting control over its activity following cellular delivery. Using the split Venus protein we directly show that addition of a small molecule dimerizer causes synchronous activation of the delivered protein across the entire cell population. This combination of cellular delivery and triggered activation provides a defined starting point for functional studies and could be applied to other protein transfection methods

    Desmoglein 2 regulates the intestinal epithelial barrier via p38 mitogen-activated protein kinase

    Get PDF
    Intestinal epithelial barrier properties are maintained by a junctional complex consisting of tight junctions (TJ), adherens junctions (AJ) and desmosomes. Desmoglein 2 (Dsg2), an adhesion molecule of desmosomes and the only Dsg isoform expressed in enterocytes, is required for epithelial barrier properties and may contribute to barrier defects in Crohn's disease. Here, we identified extradesmosomal Dsg2 on the surface of polarized enterocytes by Triton extraction, confocal microscopy, SIM and STED. Atomic force microscopy (AFM) revealed Dsg2-specific binding events along the cell border on the surface of enterocytes with a mean unbinding force of around 30pN. Binding events were blocked by an inhibitory antibody targeting Dsg2 which under same conditions activated p38MAPK but did not reduce cell cohesion. In enterocytes deficient for Dsg2, p38MAPK activity was reduced and both barrier integrity and reformation were impaired. Dsc2 rescue did not restore p38MAPK activity indicating that Dsg2 is required. Accordingly, direct activation of p38MAPK in Dsg2-deficient cells enhanced barrier reformation demonstrating that Dsg2-mediated activation of p38MAPK is crucial for barrier function. Collectively, our data show that Dsg2, beside its adhesion function, regulates intestinal barrier function via p38MAPK signalling. This is in contrast to keratinocytes and points towards tissue-specific signalling functions of desmosomal cadherins

    Cohesin depleted cells pass through mitosis and reconstitute a functional nuclear architecture

    Get PDF
    The human genome forms thousands of “contact domains”, which are intervals of enhanced contact frequency. Some, called “loop domains” are thought to form by cohesin-mediated loop extrusion. Others, called “compartmental domains”, form due to the segregation of active and inactive chromatin into A and B compartments. Recently, Hi-C studies revealed that the depletion of cohesin leads to the disappearance of all loop domains within a few hours, but strengthens compartment structure. Here, we combine live cell microscopy, super-resolution microscopy, Hi-C, and studies of replication timing to examine the longer-term consequences of cohesin degradation in HCT-116 human colorectal carcinoma cells, tracking cells for up to 30 hours. Surprisingly, cohesin depleted cells proceed through an aberrant mitosis, yielding a single postmitotic cell with a multilobulated nucleus. Hi-C reveals the continued disappearance of loop domains, whereas A and B compartments are maintained. In line with Hi-C, microscopic observations demonstrate the reconstitution of chromosome territories and chromatin domains. An interchromatin channel system (IC) expands between chromatin domain clusters and carries splicing speckles. The IC is lined by active chromatin enriched for RNA Pol II and depleted in H3K27me3. Moreover, the cells exhibit typical early-, mid-, and late- DNA replication timing patterns. Our observations indicate that the functional nuclear compartmentalization can be maintained in cohesin depleted pre- and postmitotic cells. However, we find that replication foci – sites of active DNA synthesis – become physically larger consistent with a model where cohesin dependent loop extrusion tends to compact intervals of replicating chromatin, whereas their genomic boundaries are associated with compartmentalization, and do not change.3D FISH3D fluorescence in situ hybridization3D SIM3D structured illumination microscopyAIDauxin inducible degronANC / INCactive / inactive nuclear compartmentCTchromosome territoryCD(C)chromatin domain (cluster)CTCFCCCTC binding factorDAPI4’,6-diamidino-2-phenylindoleEdU5-Ethynyl-2’-deoxyuridineHi-Cchromosome conformation capturing combined with deep sequencingICinterchromatin compartmentMLNmultilobulated nucleusNCnucleosome clusterPBSphosphate buffered salinePBSTphosphate buffered saline with 0.02% TweenPRperichromatin regionRDreplication domainRLreplication labelingTADtopologically associating domai

    Cohesin depleted cells rebuild functional nuclear compartments after endomitosis

    Get PDF
    Cohesin plays an essential role in chromatin loop extrusion, but its impact on a compartmentalized nuclear architecture, linked to nuclear functions, is less well understood. Using live-cell and super-resolved 3D microscopy, here we find that cohesin depletion in a human colon cancer derived cell line results in endomitosis and a single multilobulated nucleus with chromosome territories pervaded by interchromatin channels. Chromosome territories contain chromatin domain clusters with a zonal organization of repressed chromatin domains in the interior and transcriptionally competent domains located at the periphery. These clusters form microscopically defined, active and inactive compartments, which likely correspond to A/B compartments, which are detected with ensemble Hi-C. Splicing speckles are observed nearby within the lining channel system. We further observe that the multilobulated nuclei, despite continuous absence of cohesin, pass through S-phase with typical spatio-temporal patterns of replication domains. Evidence for structural changes of these domains compared to controls suggests that cohesin is required for their full integrity

    A study of Docetaxel-induced effects in MCF-7 cells by means of Raman microspectroscopy

    Get PDF
    Chemotherapies feature a low success rate of about 25%, and therefore, the choice of the most effective cytostatic drug for the individual patient and monitoring the efficiency of an ongoing chemotherapy are important steps towards personalized therapy. Thereby, an objective method able to differentiate between treated and untreated cancer cells would be essential. In this study, we provide molecular insights into Docetaxel-induced effects in MCF-7 cells, as a model system for adenocarcinoma, by means of Raman microspectroscopy combined with powerful chemometric methods. The analysis of the Raman data is divided into two steps. In the first part, the morphology of cell organelles, e.g. the cell nucleus has been visualized by analysing the Raman spectra with k-means cluster analysis and artificial neural networks and compared to the histopathologic gold standard method hematoxylin and eosin staining. This comparison showed that Raman microscopy is capable of displaying the cell morphology; however, this is in contrast to hematoxylin and eosin staining label free and can therefore be applied potentially in vivo. Because Docetaxel is a drug acting within the cell nucleus, Raman spectra originating from the cell nucleus region were further investigated in a next step. Thereby we were able to differentiate treated from untreated MCF-7 cells and to quantify the cell–drug response by utilizing linear discriminant analysis models

    The two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release from lysosomal stores

    Get PDF
    Second messenger-induced Ca2+-release from intracellular stores plays a key role in a multitude of physiological processes. In addition to 1,4,5-inositol trisphosphate (IP3), Ca2+, and cyclic ADP ribose (cADPR) that trigger Ca2+-release from the endoplasmatic reticulum (ER), nicotinic acid adenine dinucleotide phosphate (NAADP) has been identified as a cellular metabolite that mediates Ca2+-release from lysosomal stores. While NAADP-induced Ca2+-release has been found in many tissues and cell types, the molecular identity of the channel(s) conferring this release remained elusive so far. Here, we show that TPCN2, a novel member of the two-pore cation channel family, displays the basic properties of native NAADP-dependent Ca2+-release channels. TPCN2 transcripts are widely expressed in the body and encode a lysosomal protein forming homomers. TPCN2 mediates intracellular Ca2+-release after activation with low-nanomolar concentrations of NAADP while it is desensitized by micromolar concentrations of this second messenger and is insensitive to the NAADP analog nicotinamide adenine dinucleotide phosphate (NADP). Furthermore, TPCN2-mediated Ca2+-release is almost completely abolished when the capacity of lysosomes for storing Ca2+ is pharmacologically blocked. By contrast, TPCN2-specific Ca2+-release is unaffected by emptying ER-based Ca2+ stores. In conclusion, these findings indicate that TPCN2 is a major component of the long-sought lysosomal NAADP-dependent Ca2+-release channel

    BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples.

    Get PDF
    Light-sheet imaging of cleared and expanded samples creates terabyte-sized datasets that consist of many unaligned three-dimensional image tiles, which must be reconstructed before analysis. We developed the BigStitcher software to address this challenge. BigStitcher enables interactive visualization, fast and precise alignment, spatially resolved quality estimation, real-time fusion and deconvolution of dual-illumination, multitile, multiview datasets. The software also compensates for optical effects, thereby improving accuracy and enabling subsequent biological analysis

    Adenosine induces growth-cone turning of sensory neurons

    Get PDF
    The formation of appropriate connections between neurons and their specific targets is an essential step during development and repair of the nervous system. Growth cones are located at the leading edges of the growing neurites and respond to environmental cues in order to be guided to their final targets. Directional information can be coded by concentration gradients of substrate-bound or diffusible-guidance molecules. Here we show that concentration gradients of adenosine stimulate growth cones of sensory neurons (dorsal root ganglia) from chicken embryos to turn towards the adenosine source. This response is mediated by adenosine receptors. The subsequent signal transduction process involves cAMP. It may be speculated that the in vivo function of this response is concerned with the formation or the repair and regeneration of the peripheral nervous system
    corecore