23,875 research outputs found

    Raman spectroscopy with ultrashort coherent excitation. Narrowing of spectral lines beyond the dephasing linewidth

    Get PDF
    Spectroscopists are constantly faced with the task of improved spectral resolution. Two points are of major interest: (i) The precise frequency of the quantized transition and (ii) the detection of new neighboring transitions. Besides experimental factors the ultimate spectral resolution is determined by the inherent linewidth of the transition. Optical spectroscopists have to deal with different line-broadening processes; for instance with the Doppler effect or with collision broadening in gases, with dephasing processes in condensed systems and with the population relaxation which results in the natural linewidth. In recent years, different novel techniques have been devised which provide spectral resolution beyond the transition linewidth. For instance, Doppler broadening can be eliminated by saturation spectroscopy or by two counter-propagating beams for two-photon transitions/I/. Even measurements beyond the natural linewidth have been performed taking biased signals from the fluorescent decay /2-5/. Techniques have been proposed where the difference between the decay rates of the two states rather than their sum determines the linewidth /6,7/, and narrowing of the natural linewidth by decaying-pulse excitation has been discussed /8/. Very recently, we have demonstrated substantial line narrowing of Raman type transitions in condensed phases /9-11/. The lines were broadened by vibrational dephasing. New information was obtained in congestedspectral regions

    EFFECTS OF ENERGY DEVELOPMENT ON AGRICULTURAL LAND VALUES

    Get PDF
    This paper uses multiple regression analysis to examine the effects of energy resource development on sale prices of agricultural land in western North Dakota. The findings suggest that energy resources development has exerted only modest upward pressure on agricultural land values in the northern Great Plains. The land market in this region remains dominated by active farmers who are purchasing farmland as a long-term investment, and energy development has not had a major impact on the structure of that market.Land Economics/Use, Resource /Energy Economics and Policy,

    Evaluation of flow quality in two large NASA wind tunnels at transonic speeds

    Get PDF
    Wind tunnel testing of low drag airfoils and basic transition studies at transonic speeds are designed to provide high quality aerodynamic data at high Reynolds numbers. This requires that the flow quality in facilities used for such research be excellent. To obtain a better understanding of the characteristics of facility disturbances and identification of their sources for possible facility modification, detailed flow quality measurements were made in two prospective NASA wind tunnels. Experimental results are presented of an extensive and systematic flow quality study of the settling chamber, test section, and diffuser in the Langley 8 foot transonic pressure tunnel and the Ames 12 foot pressure wind tunnel. Results indicate that the free stream velocity and pressure fluctuation levels in both facilities are low at subsonic speeds and are so high as to make it difficult to conduct meaningful boundary layer control and transition studies at transonic speeds

    An infrared study of the bi-polar outflow region GGD 12-15

    Get PDF
    Infrared observations from 1 to 100 microns are presented for the region associated with a bipolar CO outflow source near the nebulous objects GGD 12 to 15. A luminous far-infrared source was found associated with a radio-continuum source in the area. This object appears to be a compact HII region around a nearly main-sequence BO star. A faint 20 micron source was also discovered at the position of an H2O maser 3O deg northwest of the HII region. This object appears to be associated with but not coincident with a 2 micron reflection nebula. This structure serves as evidence for a non-spherically symmetric, possibly disk-like dust distribution around the exciting star for the maser. This object probably powers the bi-polar CO outflow although its luminosity is less than 10% that of the star which excites the compact HII region. A number of other 2 micron sources found in the area are probably members of a recently formed cluster

    Far-infrared photometry of compact extragalactic sources: OJ 187 and BL Lac

    Get PDF
    The 50 and 100 micron emissions of OJ 287 were detected and upper limits for BL Lac were obtained. These first measurements of two BL Lac objects in the far-infrared show them to be similar to the few quasars previously observed in the far-infrared. In particular, there is no evidence for significant dust emission, and the lambda approximately 100 micron flux density fits on a smooth line joining the near-infrared and millimeter continuum fluxes. The implications of the results for models of the sources are discussed briefly

    Rotor redesign for a highly loaded 1800 ft/sec tip speed fan. 3: Laser Doppler velocimeter report

    Get PDF
    Laser Doppler velocimeter (LDV) techniques were employed for testing a highly loaded, 550 m/sec (1800 ft/sec) tip speed, test fan stage, the objective to provide detailed mapping of the upstream, intrablade, and downstream flowfields of the rotor. Intrablade LDV measurements of velocity and flow angle were obtained along four streamlines passing through the leading edge at 45%, 69%, 85%, and 95% span measured from hub to tip, at 100% of design speed, peak efficiency; 100% speed, near surge; and 95% speed, peak efficiency. At the design point, most passages appeared to have a strong leading edge shock, which moved forward with increasing strength near surge and at part speeds. The flow behind the shock was of a complex mixed subsonic and supersonic form. The intrablade flowfields were found to be significantly nonperiodic at 100% design speed, peak efficiency

    Image restoration and superresolution as probes of small scale far-IR structure in star forming regions

    Get PDF
    Far-infrared continuum studies from the Kuiper Airborne Observatory are described that are designed to fully exploit the small-scale spatial information that this facility can provide. This work gives the clearest picture to data on the structure of galactic and extragalactic star forming regions in the far infrared. Work is presently being done with slit scans taken simultaneously at 50 and 100 microns, yielding one-dimensional data. Scans of sources in different directions have been used to get certain information on two dimensional structure. Planned work with linear arrays will allow us to generalize our techniques to two dimensional image restoration. For faint sources, spatial information at the diffraction limit of the telescope is obtained, while for brighter sources, nonlinear deconvolution techniques have allowed us to improve over the diffraction limit by as much as a factor of four. Information on the details of the color temperature distribution is derived as well. This is made possible by the accuracy with which the instrumental point-source profile (PSP) is determined at both wavelengths. While these two PSPs are different, data at different wavelengths can be compared by proper spatial filtering. Considerable effort has been devoted to implementing deconvolution algorithms. Nonlinear deconvolution methods offer the potential of superresolution -- that is, inference of power at spatial frequencies that exceed D lambda. This potential is made possible by the implicit assumption by the algorithm of positivity of the deconvolved data, a universally justifiable constraint for photon processes. We have tested two nonlinear deconvolution algorithms on our data; the Richardson-Lucy (R-L) method and the Maximum Entropy Method (MEM). The limits of image deconvolution techniques for achieving spatial resolution are addressed
    • …
    corecore