19 research outputs found

    In situ infiltration as influenced by cover crop and tillage management

    Get PDF
    Water is usually the most limiting factor in agricultural grain crop production. Various agricultural management practices such as tillage and use of cover crops have the potential to influence water infiltration into soil. This study was conducted on a Waldron silt loam (fine, smectictic, calcareous, mesic Aeric Fluvaquents) soil to evaluate the influence of cover crop and tillage management on in situ infiltration. The field site included three replicate blocks in a randomized complete block design with each plot measuring 21.3 m (69.9 ft) length and 12.2 m (40.0 ft) width. The two treatment factors included cover crop at two levels (cereal rye [Secale cereale] cover crop [CC] versus no cover crop [NC]) and tillage at two levels (moldboard plow tillage [Till] versus no-tillage [NT]). Continuous corn (Zea mays L.) was grown. Infiltration rates were measured in all the treatments using a Mariotte system with single ring infiltrometers during the 2014 and 2015 growing seasons. Water infiltration parameters were estimated using the Parlange and Green-Ampt infiltration equations. Parlange and Green-Ampt models appeared to fit measured data well with coefficient of variation ranging from 0.92 to 0.99. In 2014, the saturated hydraulic conductivity (KS) parameter value determined from the Parlange model was 30.4 mm h-1 for NT, about 42% greater than Till. The KS parameter value determined from the Green-Ampt model was 25.9 mm h-1 for NT, about 54% greater than Till. In 2015, the sorptivity (S) parameter value determined from the Parlange model was 38.6 mm h-0.5 for CC, about 82% greater than NC. The S parameter value determined from the Green-Ampt model was 34.0 mm h-0.5 for CC, about 90% greater than NC. Cover crop management can increase water infiltration, which can improve soil quality and enhance the sustainability of crop production systems

    Soil hydraulic properties: influence of tillage and cover crops

    Get PDF
    Understanding the effects of cover crops and tillage on soil physical properties is important for determining soil productivity. This study was conducted at Lincoln University's Freeman Center, USA to evaluate the effects of tillage and cover crop management on soil hydraulic properties. The field site included three replicate blocks in a randomized complete block design with each plot measuring 21.3 m in length and 12.2 m in width. Treatment factors were tillage at two levels (moldboard plow tillage vs. no tillage) and cover crop at two levels (cereal rye (Secale cereal) cover crop vs. no cover crop). Soil samples were collected in late spring/early summer from each treatment at 10-cm depth increments from the soil surface to a depth of 40 cm using cores (76.2-mm diameter and 76.2-mm length). Soil bulk density was 13% lower with tillage compared with no-tillage. Volumetric water content was significantly higher at 0.0 and −0.4 kPa pressures with tillage compared with no tillage. Tillage increased the proportion of coarse mesopores by 32% compared with no tillage, resulting in 87% higher saturated hydraulic conductivity (Ksat). Cover crop increased the proportion of macropores by 24% compared with no cover crop; this can potentially increase water infiltration and reduce runoff. As a result of higher macroporosity, Ksat was higher under cover crop compared with no cover crop. This study demonstrated that tillage can benefit soil hydraulic properties in the short term, but these effects may not persist over time. Cover crops may slightly improve soil hydraulic properties, but longer term studies are needed to evaluate the long-term effects

    Soil thermal properties affected by topsoil thickness in switchgrass and row crop management systems

    Get PDF
    Perennial systems, such as switchgrass have been shown to improve soil hydraulic properties on degraded soils relative to annual cropping systems; however, studies of the effects on thermal properties are limited. Therefore, the objectives of this study were to determine the effects of topsoil thickness on soil thermal properties under switchgrass (Panicum virgatum L.) and row crop production systems. The experiment was carried out at the University of Missouri South Farm Research Center (38°54′ N, 92°16′ W). Research plots were re-established in 2009 with selected topsoil thickness categorized into two treatments (shallow [4 cm] and deep [36 cm]) on a Mexico silt loam (Vertic Epiaqualfs). Plots were planted to either switchgrass or a corn (Zea mays L.)-soybean (Glycine max (L.) Merr.) rotation with four replicates. Undisturbed soil cores (7.6 by 7.6 cm) and bulk soil were collected from two depths (10 cm increments) to determine thermal properties. Thermal conductivity (λ), vo-lumetric heat capacity (C v), and thermal diffusivity (D) were measured at 0, −33, −100 and − 300 kPa soil water pressures. In addition, soil organic carbon (SOC), bulk density (D b) and water content (θ) were also determined. The results showed that the switchgrass treatment had 23% higher SOC, 5-8% greater θ, and 11% lower D b than the row crop treatment. In turn, switchgrass plot exhibited a 5-7% reduction in λ, an 8-9% reduction in D, and a 2-3% increase in C v. Shallow topsoil thickness demonstrated increased thermal properties (λ, D and C v) relative to the deep topsoil thickness, likely due to higher clay content in the surface soil horizon and associated higher θ. This study contributes to a better understanding of the impact of topsoil loss and perennial vegetation on the thermal properties of soils in degraded landscapes

    Soil thermal properties influenced by perennial biofuel and cover crop management

    Get PDF
    Heat transport is an important factor that can influence the soil environment. The objective of this study was to determine if perennial biofuel and cover crops could alter soil thermal properties. Experimental treatments included two levels of cover crops (cover crops [CC] vs. no cover crops) [NC], collectively called row crops (RC), and two biofuel crop treatments. Cover crops used included cereal rye (Secale cereale L.), hairy vetch (Vicia villosa subsp. villosa), and Austrian winter pea [Pisum sativum subsp. arvense (L.) Asch. & Graebn]. The two biofuel treatments included perennial biofuel crops (PB): giant miscanthus (Miscanthus × giganteus J.M. Greef & Deuter ex Hodkinson & Renvoize) and switchgrass (Panicum virgatum L.). Soil samples were collected at 10-cm depth increments from the soil surface to a depth of 30 cm. Soil thermal properties (thermal conductivity [λ], volumetric heat capacity [CV], thermal diffusivity [D]), and volumetric water content (θ) were determined at 0, -33, -100 and -300 kPa soil water matric potentials. Additionally, bulk density and soil organic C (SOC) were determined. Results showed that PB had 11% higher CV at saturation, probably because they had significantly higher θ and SOC than RC management. Cover crops had 13% higher CV at saturation probably because they had significantly higher θ and SOC than no cover crop management. Row crops had significantly higher λ and D than PB. The results from the current study imply that CC and PB can change soil thermal properties by reducing λ and D and increasing CV under laboratory conditions

    Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems

    Get PDF
    Conversion of annual grain crop systems to biofuel production systems can restore soil hydrologic function; however, information on these effects is limited. Hence, the objective of this study was to evaluate the influence of topsoil thickness on water infiltration in claypan soils for grain and switchgrass (Panicum virgatum L.) production systems. The experiment was performed at the University of Missouri South Farm (38°54′N, 92°16′W) on a Mexico silt loam (Vertic Luvisols) soil. Since 2009, plots were planted with either switchgrass or a corn (Zea mays L.)-soybean (Glycine max (L.) Merr.) rotation. Infiltration rates were measured using ponded infiltrometers during two years (2014 and 2015) under switchgrass and grain crop management each with two levels of topsoil thickness (0 and 37.5 cm). Physically-based Parlange and Green-Ampt infiltration models were used to estimate saturated hydraulic conductivity (Ks) and sorptivity (S) parameters. Switchgrass planted on degraded soil (shallow topsoil treatment) resulted in greater Ks, S, qs (quasi-steady infiltration rate) and Kfs (field-saturated hydraulic conductivity) values than with row crop management for both 2014 and 2015 measurement years. Results for selected 24-hour mean frequency (11.8, 14.2, and 16.2 cm) storms showed that switchgrass production systems enhanced estimated water infiltration, reduced estimated runoff, and decreased estimated time from water ponding to end of ponding compared with row crop management. Switchgrass is recommended to be planted on degraded soils especially in claypan landscapes for improved water use

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: an international microbiology and drug evaluation prospective substudy (BARNARDS)

    Get PDF
    Background Sepsis is a major contributor to neonatal mortality, particularly in low-income and middle-income countries (LMICs). WHO advocates ampicillin–gentamicin as first-line therapy for the management of neonatal sepsis. In the BARNARDS observational cohort study of neonatal sepsis and antimicrobial resistance in LMICs, common sepsis pathogens were characterised via whole genome sequencing (WGS) and antimicrobial resistance profiles. In this substudy of BARNARDS, we aimed to assess the use and efficacy of empirical antibiotic therapies commonly used in LMICs for neonatal sepsis. Methods In BARNARDS, consenting mother–neonates aged 0–60 days dyads were enrolled on delivery or neonatal presentation with suspected sepsis at 12 BARNARDS clinical sites in Bangladesh, Ethiopia, India, Pakistan, Nigeria, Rwanda, and South Africa. Stillborn babies were excluded from the study. Blood samples were collected from neonates presenting with clinical signs of sepsis, and WGS and minimum inhibitory concentrations for antibiotic treatment were determined for bacterial isolates from culture-confirmed sepsis. Neonatal outcome data were collected following enrolment until 60 days of life. Antibiotic usage and neonatal outcome data were assessed. Survival analyses were adjusted to take into account potential clinical confounding variables related to the birth and pathogen. Additionally, resistance profiles, pharmacokinetic–pharmacodynamic probability of target attainment, and frequency of resistance (ie, resistance defined by in-vitro growth of isolates when challenged by antibiotics) were assessed. Questionnaires on health structures and antibiotic costs evaluated accessibility and affordability. Findings Between Nov 12, 2015, and Feb 1, 2018, 36 285 neonates were enrolled into the main BARNARDS study, of whom 9874 had clinically diagnosed sepsis and 5749 had available antibiotic data. The four most commonly prescribed antibiotic combinations given to 4451 neonates (77·42%) of 5749 were ampicillin–gentamicin, ceftazidime–amikacin, piperacillin–tazobactam–amikacin, and amoxicillin clavulanate–amikacin. This dataset assessed 476 prescriptions for 442 neonates treated with one of these antibiotic combinations with WGS data (all BARNARDS countries were represented in this subset except India). Multiple pathogens were isolated, totalling 457 isolates. Reported mortality was lower for neonates treated with ceftazidime–amikacin than for neonates treated with ampicillin–gentamicin (hazard ratio [adjusted for clinical variables considered potential confounders to outcomes] 0·32, 95% CI 0·14–0·72; p=0·0060). Of 390 Gram-negative isolates, 379 (97·2%) were resistant to ampicillin and 274 (70·3%) were resistant to gentamicin. Susceptibility of Gram-negative isolates to at least one antibiotic in a treatment combination was noted in 111 (28·5%) to ampicillin–gentamicin; 286 (73·3%) to amoxicillin clavulanate–amikacin; 301 (77·2%) to ceftazidime–amikacin; and 312 (80·0%) to piperacillin–tazobactam–amikacin. A probability of target attainment of 80% or more was noted in 26 neonates (33·7% [SD 0·59]) of 78 with ampicillin–gentamicin; 15 (68·0% [3·84]) of 27 with amoxicillin clavulanate–amikacin; 93 (92·7% [0·24]) of 109 with ceftazidime–amikacin; and 70 (85·3% [0·47]) of 76 with piperacillin–tazobactam–amikacin. However, antibiotic and country effects could not be distinguished. Frequency of resistance was recorded most frequently with fosfomycin (in 78 isolates [68·4%] of 114), followed by colistin (55 isolates [57·3%] of 96), and gentamicin (62 isolates [53·0%] of 117). Sites in six of the seven countries (excluding South Africa) stated that the cost of antibiotics would influence treatment of neonatal sepsis
    corecore