15 research outputs found

    C57BL/6 and Swiss Webster Mice Display Differences in Mobility, Gliosis, Microcavity Formation and Lesion Volume After Severe Spinal Cord Injury

    Get PDF
    Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear. To study the influence of mouse strain on recovery after severe SCI, we first carried out behavioral analyses up to 6 weeks following complete transection of the spinal cord in mice with two different genetic backgrounds namely, C57BL/6 and Swiss Webster. Using immunohistochemistry, we then analyzed glial cell reactivity not only at different time-points after injury but also at different distances from the lesion epicenter. Behavioral assessments using CatWalk™ and open field analyses revealed increased mobility (measured using average speed) and differential forelimb gross sensory response in Swiss Webster compared to C57BL/6 mice after complete transection of the spinal cord. Comprehensive histological assessment revealed elevated microglia/macrophage reactivity and a moderate increase in astrogliosis in Swiss Webster that was associated with reduced microcavity formation and reduced lesion volume after spinal cord transection compared to C57BL/6 mice. Our results thus suggest that increased mobility correlates with enhanced gliosis and better tissue protection after complete transection of the spinal cord

    Serotonergic Mechanisms in Spinal Cord Injury

    No full text
    International audienc

    Astrocyte-to-neuron conversion induced by spinal cord injury

    No full text
    International audienceSpinal cord injury (SCI) triggers pronounced astrocyte reactivity (astrogliosis) including astroglial proliferation and migration toward the injury site participating to the formation of a glial scar. Since the mid-20 th century, SCI-induced astrogliosis was mainly regarded as detrimental for successful axonal regeneration. However, more recent studies have shown astrogliosis as a multifactorial phenomenon involving specific morphological, molecular and functional alterations in astrocytes that can also exert beneficial effects [1, 2]. It was suggested, although not proven, that SCI-induced astrogliosis depends on multiple factors such as time after lesion, injury severity and distance to the lesion site. In a recent study we had attempted to uncover the molecular involvement of astrocytes after SCI by studying their transcriptomic alterations at different stages after moderate and severe lesions [3]. Aldehyde dehydrogenase 1 family member L1 (Aldh1l1) is a pan-astrocytic marker, hence using the Aldh1l1-EGFP transgenic mice, combined with fluorescence-activated cell sorting (FACS), we isolated pure astrocyte population at different stages following SCI. Choosing lateral hemisection and complete section of the spinal cord, as moderate and severe injury models, we investigated astrocytic response at 1 and 2 weeks after lesion. We subsequently carried out astrocyte-specific RNA-sequencing and pathway analyses to unveil the molecular signature of injuries-induced astrogliosis. Our transcriptomic analyses demonstrated a dual astrocytic response depending on time post-injury and lesion severity. Following moderate SCI, astrocytes displayed a protective role and showed no changes (1 week) and even down-regulated (2 weeks) expression of transcripts involved in immune response. On the other hand, astrocytes response after severe SCI seems to be detrimental by an upsurge expression of inflammatory genes (1 week) and prevention of extracellular re-modeling (2 weeks) (3). These are the first concrete evidence of a heterogeneous astrocytic response that is driven not only by lesion severity but also time after injury (Figure 1). In parallel, using pathway analyses, we also identified in astrocytes the induction of the neural stem cell lineage and the over-expression of the neuronal progenitor gene βIII-tubulin (Tubb3, also known as TUJ1). We confirmed βIII-tubulin protein expression at tissue level using immunohistochemistry and at single cell level using FACS analyses. The sub-population of astrocytes that express βIII-tubulin was only found within 750µm distance to the lesion epicenter. Astrocytes co-expressing βIII-tubulin, also displayed alterations in their morphology from typical stellate shape to classical neuronal progenitor cells with bipolar or multipolar processes. Given that SCI induces astrocytic proliferation, we injected BrdU in Aldh1l1-EGFP mice after injury to determine the origin of eGFP/βIII-tubulin co-expressing cells. BrdU incorporation was observed into newly formed astrocytes but not in eGFP/βIII-tubulin-expressing astrocytes. This suggests that it is the resident mature astrocytes, rather than newly formed astrocytes, that undergo transdifferentiation towards neuronal lineage (Figure 1). Time-dependent analyses revealed that astrocytic conversion towards neuronal lineage starts as early as 72 hours, peaking between 1-2 weeks and continues to a lower degree up to 6 weeks after both moderate and severe SCI. Further immunostaining, using mature neuronal markers, showed that transdifferentiating astrocytes eventually express GABAergic, but not glutamatergic, markers. Moreover, we identified the fibroblast growth factor receptor 4 (Fgfr4) as a potential player responsible for SCI-induced astrocytic transdifferentiation towards neuronal lineage. Fgfr4 indeed promotes embryonic stem cell differentiation towards neuronal lineage [4] and showed pronounced over-expression from 72 hours following lesion at both RNA and protein level. Although other recent studies had shown limited astrocytes conversion towards neuronal lineage upon enforced expression of neurogenic factors, none had Editorial Figure 1: Schematic cartoon displaying summary of astrocytic responses following SC

    Image_1_C57BL/6 and Swiss Webster Mice Display Differences in Mobility, Gliosis, Microcavity Formation and Lesion Volume After Severe Spinal Cord Injury.TIF

    No full text
    <p>Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear. To study the influence of mouse strain on recovery after severe SCI, we first carried out behavioral analyses up to 6 weeks following complete transection of the spinal cord in mice with two different genetic backgrounds namely, C57BL/6 and Swiss Webster. Using immunohistochemistry, we then analyzed glial cell reactivity not only at different time-points after injury but also at different distances from the lesion epicenter. Behavioral assessments using CatWalk™ and open field analyses revealed increased mobility (measured using average speed) and differential forelimb gross sensory response in Swiss Webster compared to C57BL/6 mice after complete transection of the spinal cord. Comprehensive histological assessment revealed elevated microglia/macrophage reactivity and a moderate increase in astrogliosis in Swiss Webster that was associated with reduced microcavity formation and reduced lesion volume after spinal cord transection compared to C57BL/6 mice. Our results thus suggest that increased mobility correlates with enhanced gliosis and better tissue protection after complete transection of the spinal cord.</p

    Image_3_C57BL/6 and Swiss Webster Mice Display Differences in Mobility, Gliosis, Microcavity Formation and Lesion Volume After Severe Spinal Cord Injury.TIF

    No full text
    <p>Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear. To study the influence of mouse strain on recovery after severe SCI, we first carried out behavioral analyses up to 6 weeks following complete transection of the spinal cord in mice with two different genetic backgrounds namely, C57BL/6 and Swiss Webster. Using immunohistochemistry, we then analyzed glial cell reactivity not only at different time-points after injury but also at different distances from the lesion epicenter. Behavioral assessments using CatWalk™ and open field analyses revealed increased mobility (measured using average speed) and differential forelimb gross sensory response in Swiss Webster compared to C57BL/6 mice after complete transection of the spinal cord. Comprehensive histological assessment revealed elevated microglia/macrophage reactivity and a moderate increase in astrogliosis in Swiss Webster that was associated with reduced microcavity formation and reduced lesion volume after spinal cord transection compared to C57BL/6 mice. Our results thus suggest that increased mobility correlates with enhanced gliosis and better tissue protection after complete transection of the spinal cord.</p

    Image_4_C57BL/6 and Swiss Webster Mice Display Differences in Mobility, Gliosis, Microcavity Formation and Lesion Volume After Severe Spinal Cord Injury.TIF

    No full text
    <p>Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear. To study the influence of mouse strain on recovery after severe SCI, we first carried out behavioral analyses up to 6 weeks following complete transection of the spinal cord in mice with two different genetic backgrounds namely, C57BL/6 and Swiss Webster. Using immunohistochemistry, we then analyzed glial cell reactivity not only at different time-points after injury but also at different distances from the lesion epicenter. Behavioral assessments using CatWalk™ and open field analyses revealed increased mobility (measured using average speed) and differential forelimb gross sensory response in Swiss Webster compared to C57BL/6 mice after complete transection of the spinal cord. Comprehensive histological assessment revealed elevated microglia/macrophage reactivity and a moderate increase in astrogliosis in Swiss Webster that was associated with reduced microcavity formation and reduced lesion volume after spinal cord transection compared to C57BL/6 mice. Our results thus suggest that increased mobility correlates with enhanced gliosis and better tissue protection after complete transection of the spinal cord.</p

    Image_2_C57BL/6 and Swiss Webster Mice Display Differences in Mobility, Gliosis, Microcavity Formation and Lesion Volume After Severe Spinal Cord Injury.TIF

    No full text
    <p>Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear. To study the influence of mouse strain on recovery after severe SCI, we first carried out behavioral analyses up to 6 weeks following complete transection of the spinal cord in mice with two different genetic backgrounds namely, C57BL/6 and Swiss Webster. Using immunohistochemistry, we then analyzed glial cell reactivity not only at different time-points after injury but also at different distances from the lesion epicenter. Behavioral assessments using CatWalk™ and open field analyses revealed increased mobility (measured using average speed) and differential forelimb gross sensory response in Swiss Webster compared to C57BL/6 mice after complete transection of the spinal cord. Comprehensive histological assessment revealed elevated microglia/macrophage reactivity and a moderate increase in astrogliosis in Swiss Webster that was associated with reduced microcavity formation and reduced lesion volume after spinal cord transection compared to C57BL/6 mice. Our results thus suggest that increased mobility correlates with enhanced gliosis and better tissue protection after complete transection of the spinal cord.</p

    Spinal cord injury induces astroglial conversion towards neuronal lineage

    Get PDF
    International audienceAbstractBackgroundNeurons have intrinsic capability to regenerate after lesion, though not spontaneously. Spinal cord injury (SCI) causes permanent neurological impairments partly due to formation of a glial scar that is composed of astrocytes and microglia. Astrocytes play both beneficial and detrimental roles on axonal re-growth, however, their precise role after SCI is currently under debate.MethodsWe analyzed molecular changes in astrocytes at multiple stages after two SCI severities using cell-specific transcriptomic analyses.ResultsWe demonstrate that astrocyte response after injury depends on both time after injury and lesion severity. We then establish that injury induces an autologous astroglial transdifferentiation where over 10 % of astrocytes express classical neuronal progenitor markers including βIII-tubulin and doublecortin with typical immature neuronal morphology. Lineage tracing confirmed that the origin of these astrocytes is resident mature, rather than newly formed astrocytes. Astrocyte-derived neuronal progenitors subsequently express GABAergic, but not glutamatergic-specific markers. Furthermore, we have identified the neural stem cell marker fibroblast growth factor receptor 4 (Fgfr4) as a potential autologous modulator of astrocytic transdifferentiation following SCI. Finally, we establish that astroglial transdifferentiation into neuronal progenitors starts as early as 72 h and continues to a lower degrees up to 6 weeks post-lesion.ConclusionWe thus demonstrate for the first time autologous injury-induced astroglial conversion towards neuronal lineage that may represent a therapeutic strategy to replace neuronal loss and improve functional outcomes after central nervous system injury
    corecore