23 research outputs found

    Urinary chemokine (C-C motif) ligand 2 (monocyte chemotactic protein-1) as a tubular injury marker for early detection of cisplatin-induced nephrotoxicity.

    Get PDF
    Because of the difficulty in detecting segment-specific response in the kidney, we investigated the molecular events underlying acute kidney injury in the proximal tubules of rats with cisplatin (cis-diamminedichloroplatinum II)-induced nephrotoxicity. Microarray analysis revealed that mRNA levels of several cytokines and chemokines, such as interleukin-1beta, chemokine (C-C motif) ligand (CCL) 2, CCL20, chemokine (C-X-C motif) ligand (CXCL) 1, and CXCL10 were significantly increased after cisplatin treatment in both isolated proximal tubules and whole kidney. Interestingly, tubular CCL2 mRNA levels increased soon after cisplatin administration, whereas CCL2 mRNA levels in whole kidney first decreased and then increased. Levels of both CCL2 and kidney injury molecule-1 (KIM-1) in the whole kidney increased after cisplatin administration. Immunofluorescence analysis revealed CCL2 changes in the proximal tubular cells initially and then in the medullary interstitium. Urinary CCL2 excretion significantly increased approximately 3-fold compared with controls the day after cisplatin administration (5mg/kg), when no changes were observed plasma creatinine and blood urea nitrogen levels. Urinary levels of KIM-1 also increased 3-fold after cisplatin administration. In addition, urinary CCL2 rather than KIM-1 increased in chronic renal failure rats after administration of low-dose cisplatin (2mg/kg), suggesting that urinary CCL2 was selective for cisplatin-induced nephrotoxicity in renal impairment. These results indicated that the increase in cytokine and chemokine expression in renal epithelial cells might be responsible for kidney deterioration in cisplatin-induced nephrotoxicity, and that urinary CCL2 is associated with tubular injury and serves as a sensitive and noninvasive marker for the early detection of cisplatin-induced tubular injury

    Urinary kidney injury molecule-1 and monocyte chemotactic protein-1 are noninvasive biomarkers of cisplatin-induced nephrotoxicity in lung cancer patients.

    Get PDF
    First online: 25 September 2015[Purpose] Acute kidney injury (AKI) is a common and serious adverse effect of cisplatin-based chemotherapy. However, traditional markers of kidney function, such as serum creatinine, are suboptimal, because they are not sensitive measures of proximal tubular injury. We aimed to determine whether the new urinary biomarkers such as kidney injury molecule-1 (KIM-1), monocyte chemotactic protein-1 (MCP-1), and neutrophil gelatinase-associated lipocalin (NGAL) could detect cisplatin-induced AKI in lung cancer patients in comparison with the conventional urinary proteins such as N-acetyl-β-D-glucosaminidase (NAG) and β2-microglobulin. [Methods] We measured KIM-1, MCP-1, NGAL, NAG, and β2-microglobulin concentrations in urine samples from 11 lung cancer patients, which were collected the day before cisplatin administration and on days 3, 7, and 14. Subsequently, we evaluated these biomarkers by comparing their concentrations in 30 AKI positive (+) and 12 AKI negative (−) samples and performing receiver operating characteristic (ROC) curve analyses. [Results] The urinary levels normalized with urine creatinine of KIM-1 and MCP-1, but not NGAL, NAG, and β2-microglobulin in AKI (+) samples were significantly higher than those in AKI (−) samples. In addition, ROC curve analyses revealed that KIM-1 and MCP-1, but not NGAL, could detect AKI with high accuracy (area under the curve [AUC] = 0.858, 0.850, and 0.608, respectively). The combination of KIM-1 and MCP-1 outperformed either biomarker alone (AUC = 0.871). [Conclusions] Urinary KIM-1 and MCP-1, either alone or in combination, may represent biomarkers of cisplatin-induced AKI in lung cancer patients

    Effectiveness of Sirolimus in Combination with Cyclosporine against Chronic Rejection in a Pediatric Liver Transplant Patient

    Get PDF
    The patient is a 3-year-old boy who received living-donor liver transplantation (LDLT) for hepatoblastoma, with his mother as the donor. Oral tacrolimus was started at a dose of 0.3 mg every 12 h from day 1, with the dosage adjusted on the basis of trough concentrations. The levels of aspartate aminotransferase (AST), alanine transferase (ALT), and total bilirubin (T-bil) were 110 U/L, 182 U/L, and 12.6 mg/dL, respectively, when chronic rejection (CR) was pathologically diagnosed. Then, sirolimus at a dose of 1.0 mg/d was added to the tacrolimus-based regimen. The T-bil level rapidly decreased to 5.4 mg/dL, without changes in AST and ALT. Because the intracellular receptor of sirolimus and tacrolimus is FK506-binding protein 12, we switched tacrolimus to cyclosporine at a dose of 60 mg/d to avoid competitive inhibition between these 2 drugs. The target trough concentration of sirolimus and cyclosporine was set to around 15 ng/mL and 180 ng/mL, respectively. The concentration/dose ratio of sirolimus was significantly correlated with the blood cyclosporine level (r=0.5293, p<0.05), suggesting the pharmacokinetic interaction between these 2 drugs. Thereafter, the levels of AST and ALT as well as the T-bil were successfully decreased to 73 U/L, 83 U/L, and 3.0 mg/dL, respectively. These results suggest that sirolimus therapy in combination with cyclosporine may be an effective treatment against CR after liver transplantation

    Urinary neutrophil gelatinase-associated lipocalin: a useful biomarker for tacrolimus-induced acute kidney injury in liver transplant patients.

    No full text
    Tacrolimus is widely used as an immunosuppressant in liver transplantation, and tacrolimus-induced acute kidney injury (AKI) is a serious complication of liver transplantation. For early detection of AKI, various urinary biomarkers such as monocyte chemotactic protein-1, liver-type fatty acid-binding protein, interleukin-18, osteopontin, cystatin C, clusterin and neutrophil gelatinase-associated lipocalin (NGAL) have been identified. Here, we attempt to identify urinary biomarkers for the early detection of tacrolimus-induced AKI in liver transplant patients. Urine samples were collected from 31 patients after living-donor liver transplantation (LDLT). Twenty recipients developed tacrolimus-induced AKI. After the initiation of tacrolimus therapy, urine samples were collected on postoperative days 7, 14, and 21. In patients who experienced AKI during postoperative day 21, additional spot urine samples were collected on postoperative days 28, 35, 42, 49, and 58. The 8 healthy volunteers, whose renal and liver functions were normal, were asked to collect their blood and spot urine samples. The urinary levels of NGAL, monocyte chemotactic protein-1 and liver-type fatty acid-binding protein were significantly higher in patients with AKI than in those without, while those of interleukin-18, osteopontin, cystatin C and clusterin did not differ between the 2 groups. The area under the receiver operating characteristics curve of urinary NGAL was 0.876 (95% confidence interval, 0.800-0.951; P<0.0001), which was better than those of the other six urinary biomarkers. In addition, the urinary levels of NGAL at postoperative day 1 (p = 0.0446) and day 7 (p = 0.0006) can be a good predictive marker for tacrolimus-induced AKI within next 6 days, respectively. In conclusion, urinary NGAL is a sensitive biomarker for tacrolimus-induced AKI, and may help predict renal event caused by tacrolimus therapy in liver transplant patients

    Analysis of the Molecular Score Performance.

    No full text
    <p>(<b>A</b>) Relative signal intensity heatmaps for hepatitis A virus cellular receptor 1 (HAVCR1), lipocalin 2 (LCN2), SRY-box 9 (SOX9), WAP four-disulfide core domain 2 (WFDC2), and NK6 homeobox 2 (NKX6-2) in relation to renal histopathology. (<b>B</b>) The distribution of molecular score based on histological grades. (<b>C</b>) The area under the receiver operating characteristics curve (AUC) for the molecular score of each biopsy, plotted against the grade of tubulointerstitial fibrosis and tubular cell damage.</p
    corecore