Kyoto University Research Info			
Title	Urinary kidney injury molecule-1 and monocyte chemotactic protein-1 are noninvasive biomarkers of cisplatin-induced nephrotoxicity in lung cancer patients.		
Author(s)	Shinke, Haruka; Masuda, Satohiro; Togashi, Yousuke; Ikemi, Yasuaki; Ozawa, Aiko; Sato, Tomoko; Kim, Young Hak; Mishima, Michiaki; Ichimura, Takaharu; Bonventre, Joseph V; Matsubara, Kazuo		
Citation	Cancer chemotherapy and pharmacology (2015), 76(5): 989- 996		
Issue Date	2015-11		
URL	http://hdl.handle.net/2433/203018		
Right	The final publication is available at Springer via http://dx.doi.org/10.1007/s00280-015-2880-y.; The full-text file will be made open to the public on 25 September 2016 in accordance with publisher's 'Terms and Conditions for Self- Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。 引用の際には出版社版をご確認ご利用ください。		
Туре	Journal Article		
Textversion	author		

1	Date of revision: August 21, 2015; manuscript number: CCP-15-0205		
2	Urinary kidney injury molecule-1 and monocyte chemotactic protein-1 are		
3	noninvasive biomarkers of cisplatin-induced nephrotoxicity in lung cancer patients		
4			
5	Haruka Shinke ¹ , Satohiro Masuda ^{1, 2, 5, *} , Yousuke Togashi ³ , Yasuaki Ikemi ² , Aiko		
6	Ozawa ¹ , Tomoko Sato ¹ , Young Hak Kim ³ , Michiaki Mishima ³ , Takaharu Ichimura ⁴ ,		
7	Joseph V. Bonventre ⁴ , Kazuo Matsubara ^{1, 2}		
8			
9	¹ Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital,		
10	Sakyo-ku, Kyoto 606-8507, Japan		
11	² Department of Pharmacy, Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507,		
12	Japan		
13	³ Department of Respiratory Medicine, Kyoto University Hospital, Sakyo-ku, Kyoto		
14	606-8507, Japan		
15	⁴ Renal Division, Brigham and Women's Hospital, Harvard Medical School, Harvard		
16	Institutes of Medicine, Room 576, 4 Blackfan Circle, Boston, MA 02115, USA		
17	⁵ Present address: Department of Pharmacy, Kyushu University Hospital, Higashi-ku,		
18	Fukuoka 812-8582, Japan		
19			

1	*Address	correspondence	to:
	11441 055	conceptuatie	<i>w</i> .

- 2 Satohiro Masuda, Ph.D., Professor/Director
- 3 Department of Pharmacy, Kyushu University Hospital,
- 4 Higashi-ku, Fukuoka 812-8582, Japan
- 5 Tel: +81-92-642-5918
- 6 Fax: +81-92-642-5937
- 7 E-mail: satomsdb@pharm.med.kyushu-u.ac.jp
- 8

9 **DISCLOSURES**: NONE

- 10
- 11

12 Abbreviations

- 13 AKI, acute kidney injury; KIM-1, kidney injury molecule-1; MCP-1, monocyte
- 14 chemotactic protein-1; NGAL, neutrophil gelatinase-associated lipocalin; AUC-ROC,
- 15 area under the receiver operating characteristic curve; Scr, serum creatinine; BUN,
- 16 blood urea nitrogen.

ABSTRACT

2	<i>Purpose</i> Acute kidney injury (AKI) is a common and serious adverse effect of
3	cisplatin-based chemotherapy. However, traditional markers of kidney function, such
4	as serum creatinine, are suboptimal, because they are not sensitive measures of proximal
5	tubular injury. We aimed to determine whether the new urinary biomarkers such as
6	kidney injury molecule-1 (KIM-1), monocyte chemotactic protein-1 (MCP-1), and
7	neutrophil gelatinase-associated lipocalin (NGAL) could detect cisplatin-induced AKI
8	in lung cancer patients in comparison with the conventional urinary proteins such as
9	<i>N</i> -acetyl- β -D-glucosaminidase (NAG) and β 2-microglobulin.
10	<i>Methods</i> We measured KIM-1, MCP-1, NGAL, NAG and β 2-microglobulin
11	concentrations in urine samples from 11 lung cancer patients, which were collected the
12	day before cisplatin administration and on days 3, 7, and 14. Subsequently, we
13	evaluated these biomarkers by comparing their concentrations in 30 AKI positive (+)
14	and 12 AKI negative (-) samples and performing receiver operating characteristic
15	(ROC) curve analyses.
16	<i>Results</i> The urinary levels normalized with urine creatinine of KIM-1 and MCP-1, but
17	not NGAL, NAG and β 2-microglobulin in AKI (+) samples were significantly higher
18	than those in AKI (-) samples. In addition, ROC curve analyses revealed that KIM-1
19	and MCP-1, but not NGAL, could detect AKI with high accuracy (area under the curve
20	[AUC] = 0.858, 0.850, and 0.608, respectively). The combination of KIM-1 and
21	MCP-1 outperformed either biomarker alone (AUC = 0.871).
22	<i>Conclusions</i> Urinary KIM-1 and MCP-1, either alone or in combination, may
23	represent biomarkers of cisplatin-induced AKI in lung cancer patients.
24	
25	Key words:

1 cisplatin, acute kidney injury, biomarker, lung cancer

INTRODUCTION

2 Cisplatin is a widely used anticancer drug for several types of solid tumors, 3 such as bladder, cervical, head and neck, esophageal, and lung cancers [1]. However, 4 nephrotoxicity, which is a dose-limiting adverse effect, is a serious problem. About 5 20% of patients treated with high doses of cisplatin have peak serum creatinine (Scr) 6 levels greater than 2.0 mg/dL, which are associated with mortality rates of 30% or more 7 [2, 3]. Although this toxicity is transient in most patients and can be mitigated by 8 other treatments, such as prehydration or concomitant osmotic diuresis [2], long-term 9 treatment with cisplatin requires careful monitoring of kidney function.

10 In November 2010, the standard dosage of cisplatin for lung cancer treatment in Kyoto University Hospital was increased from 60 to 80 mg/m^2 . This is of concern 11 12 not only due to the dose-dependent nephrotoxicity of cisplatin but also because our 13 previous research on a rat model of acute kidney injury (AKI) showed that proximal 14 tubular injuries are not always associated with significant changes in the Scr levels [4]. 15 Although renal biopsy is the gold standard for diagnosing AKI, not all cancer patients 16 treated with cisplatin can undergo this procedure. Therefore, there is a need for 17 noninvasive biomarkers of cisplatin-induced AKI.

18 Traditional serum markers of kidney function, such as Scr and blood urea 19 nitrogen (BUN), are suboptimal because they only reflect changes in the glomerular 20 filtration rate [3], which is a nonspecific measure of proximal tubular injury that is 21 usually apparent only after significant kidney damage [5]. As a result, serum 22 biomarkers of kidney function may not be adequate to accurately detect AKI. Other 23 noninvasive urinary biomarkers, such as kidney injury molecule-1 (KIM-1) [6, 7] and 24 neutrophil gelatinase-associated lipocalin (NGAL) [8, 9], may be more useful indicators

1 of proximal tubular injury or AKI. KIM-1 is a type-1 cell membrane glycoprotein 2 up-regulated in dedifferentiated proximal tubule epithelial cells [10]. Its ectodomain 3 was shed and could be quantitated in the urine following kidney injury in a rodent 4 model of cisplatin-induced AKI [6]. On the other hand, NGAL expression is induced 5 in epithelial cells upon inflammation or malignancy. The expression of NGAL has 6 been shown to be up-regulated in the kidney proximal tubule cells and urine in a murine 7 model following ischemic or cisplatin-induced AKI [11]. In addition, recently we 8 showed that the monocyte chemotactic protein-1 (MCP-1) levels are significantly 9 increased in proximal tubular epithelial cells and urine following cisplatin-induced AKI 10 MCP-1 is a proinflammatory chemokine that plays a role in the in rats [12]. 11 recruitment of monocytes to the sites of injury and infection. Similar to NGAL, its 12 expression levels are also up-regulated in the kidney proximal tubule cells following 13 ischemic injury [13]. Therefore, we here investigated whether KIM-1, NGAL, and 14 MCP-1, either individually or in combination, can detect cisplatin-induced 15 nephrotoxicity in lung cancer patients in comparison with two conventional urinary 16 proteins *N*-acetyl- β -D-glucosaminidase (NAG) and β 2-microglobulin.

1 **MATERIALS AND METHODS** 2 Patients and study design 3 We enrolled 11 primary lung cancer patients treated with cisplatin-based 4 chemotherapy at Kyoto University Hospital between June 2011 and June 2012. The 5 administration schedules of chemotherapy and supportive therapy are shown in Figure 1. 6 None of the patients received magnesium supplementation. 7 This study was conducted in accordance with the Declaration of Helsinki and 8 was approved by the Kyoto University Graduate School and Faculty of Medicine Ethics 9 Committee. All patients provided written informed consent. 10 11 Data collection and diagnostic criteria for acute kidney injury 12 Clinical information, treatments, and laboratory data were obtained from the 13 patients' electronic medical records. Considering that extensive continuous hydration 14 (3000 mL/24 h) is provided with the administration of cisplatin, cisplatin-induced renal 15 impairment was diagnosed in patients with an increase in the BUN level of more than 16 20 mg/dL and/or the Scr level of 50% in comparison with the baseline. Patients whose 17 BUN level at the administration of cisplatin was higher than 20 mg/dL were excluded. 18 Urine samples were classified as either AKI positive (+) or negative (-). 19 20 Urine collection and biomarker analysis 21 We collected urine samples on the day before cisplatin administration (day 0) 22 and subsequently, on days 3, 7, and 14. Urine samples were collected into tubes with 23 protease inhibitor cocktail tablets (cOmplete, Mini; Roche Diagnostics, Mannheim,

24 Germany).

1	We measured the KIM-1 concentrations using Luminex xMAP microspheres			
2	with polyclonal antibodies raised against the ectodomain of human KIM-1, as described			
3	previously [14]. To measure the MCP-1 and NGAL concentrations, we used the			
4	Human CCL2/MCP-1 DuoSet and Human Lipocalin-2/NGAL DuoSet enzyme-linked			
5	immunosorbent assay kits (R&D Systems Inc., Minneapolis, MN), respectively,			
6	according to the manufacturer's instructions. Briefly, a 96-well microplate was coated			
7	with capture antibodies, and then blocked with 1% bovine serum albumin in			
8	phosphate-buffered saline. Subsequently, 100-µL samples were incubated in the			
9	blocked wells for two hours, followed by incubation with biotinylated detection			
10	antibodies for two hours and streptavidin-conjugated horseradish peroxidase (HRP) for			
11	20 minutes at room temperature. Finally, MCP-1 and NGAL were detected by adding			
12	HRP substrate and measuring the optical density at 450 nm.			
13	The concentrations of NAG and β 2-microglobulin, which are tubular injury			
14	markers, were measured by using commercial kits: the NAG test Shionogi (Shionogi			
15	Co., Osaka, Japan) and beta-2 Microglobulin Human SimpleStep ELISA [™] Kit (Abcam,			
16	Cambridge, UK), according to the manufacturers' instructions.			
17	The levels of all biomarkers were normalized to the urinary creatinine			
18	concentration, which was measured by using an assay kit (LabAssay TM Creatinine;			
19	Wako Pure Chemical Industries, Osaka, Japan).			
20				
21	Statistical analyses			
22	To evaluate the diagnostic accuracy of KIM-1, MCP-1, and NGAL, we			
23	calculated the area under the receiver operating characteristic (AUC-ROC) curve using			
24	SPSS version 18.0 (SPSS Inc., Chicago, IL). Differences were compared using the			

- 1 Mann-Whitney U test, and *p*-values less than 0.05 were considered statistically
- 2 significant. These analyses were performed using Prism Version 5.0 (GraphPad, San
- 3 Diego, CA).

RESULTS

2 Patient characteristics

3 The patient characteristics are shown in Table 1. The mean (standard 4 deviation [SD]) age of the patients in this study was 65.9 (10.1) years (range: 49–77 5 years). All patients had stage III lung cancer. The baseline mean (SD) levels of Scr 6 and BUN were 0.75 (0.26) mg/dL and 14.3 (3.9) mg/dL, respectively. Seven patients 7 were treated with 80 mg/m² cisplatin, while the remaining patients were administered 8 lower doses due to reduced kidney function. The mean total cisplatin dosage was 9 108.1 (20.1) mg. Ten out of the 11 patients received cisplatin combined with 10 vinorelbine (VNR).

11

1

12 Urinary and serum biomarkers of kidney function exhibit time-dependent changes 13 during cisplatin-induced acute kidney injury

14 Surprisingly, all but one patient met the diagnostic criteria for AKI throughout 15 the study. We observed time-dependent changes in the levels of serum and urinary 16 biomarkers during cisplatin treatment. Figure 2 shows an example of these changes in 17 a 49-year-old male patient with stage IIIA non-small cell lung adenocarcinoma treated with a combination of vinorelbine (20 mg/m², 31 mg/body), cisplatin (80 mg/m², 125 18 19 mg/body), and radiation. On day 3 after cisplatin treatment, AKI was diagnosed, 20 because the BUN level exceeded 20 mg/dL. Between the cisplatin treatment initiation 21 (day 0) and day 7, the Scr and BUN (Figure 2a) and urinary KIM-1 and MCP-1 levels 22 increased relative to the baseline, whereas the urinary NGAL levels decreased (Figure 23 2b).

2

Urinary levels of kidney injury molecule-1 or monocyte chemotactic protein-1 can detect cisplatin-induced acute kidney injury

3 To determine whether the urinary levels of KIM-1, MCP-1, and NGAL can be 4 used to detect cisplatin-induced AKI, we compared the levels of these biomarkers in 30 5 AKI (+) and 12 AKI (-) urine samples. First, we compared the absolute 6 concentrations of urinary KIM-1, MCP-1 and NGAL, as shown in SF1. The 7 concentrations of KIM-1 were significantly higher in AKI (+) samples than in AKI (-) 8 samples (p < 0.01), while the MCP-1 and NGAL concentrations in the urine did not 9 differ between the two groups. Next, to consider the inter-individual differences of 10 urine samples, the concentrations of these markers normalized to urinary creatinine 11 concentration were compared between AKI (-) samples and AKI (+) samples (Figure 3). 12 The urinary KIM-1 and MCP-1 levels in AKI (+) samples were significantly higher than 13 in AKI (–) samples (p < 0.01; Figures 3a, b). However, the NGAL concentrations did 14 not significantly differ between AKI (+) and AKI (-) samples (Figure 3c). These 15 results suggested that the urinary levels of KIM-1 or MCP-1 could detect 16 cisplatin-induced AKI. In addition, we measured the urinary concentrations of NAG 17 and β 2-microglobulin, as tubular toxicity markers (SF1d, e and Figures 3d, e). There 18 were no significant differences observed between the two groups, with or without 19 normalization to the urinary creatinine concentrations.

20 Further, we compared the Scr levels to the concentrations of KIM-1, MCP-1 21 and NGAL (SF2). However, there was no correlation between the Scr level and any of 22 the urinary biomarkers.

1	To confirm the above findings, we performed ROC curve analyses (Figure 4).
2	The AUC-ROCs of KIM-1, MCP-1, and NGAL were 0.858 ($p < 0.01$), 0.850 ($p < 0.01$).
3	and 0.608 ($p > 0.05$), respectively (Table 2), supporting the conclusion that urinary
4	KIM-1 or MCP-1 can accurately detect cisplatin-induced AKI in lung cancer patients.
5	In addition, the cut-off values of KIM-1, MCP-1, and NGAL were 2.45, 0.26, and 17.2
6	ng/mg creatinine, respectively (Table 2).

8 Combination of kidney injury molecule-1 and monocyte chemotactic protein-1 9 enhances detection of cisplatin-induced acute kidney injury

Since a combination of two biomarkers may be better than a single biomarker,
we tested whether a combination of KIM-1 and MCP-1 can detect cisplatin-induced
AKI better than either biomarker alone. We defined the combination biomarker as
follows:

14
$$\frac{(KIM-1)_I}{(KIM-1)_{cut-off}} + \frac{(MCP-1)_i}{(MCP-1)_{cut-off}}$$

In this equation, the KIM-1 and MCP-1 concentrations (denoted by *i*) are normalized to
their ROC cut-off values. The AUC-ROC for this combination, 0.871, was higher than
that of either KIM-1 or MCP-1 alone (*p* < 0.001; Figure 4d).

DISCUSSION

3 In this study, we examined whether KIM-1, NGAL, and MCP-1 can detect 4 cisplatin-induced AKI in lung cancer patients. Our results suggested that KIM-1 and 5 MCP-1, but not NGAL as well as NAG and \(\beta2\)-microglobulin, can discriminate 6 between AKI (+) and AKI (-) urine samples. The potential usefulness of KIM-1 is 7 consistent with a previous report that urinary KIM-1 is a sensitive and accurate 8 biomarker of cisplatin-induced AKI in both preclinical and clinical settings [15]. 9 Recently, Tekce et al. [16] also reported that urinary KIM-1 concentrations on the first 10 day after treatment may predict cisplatin-induced AKI with high sensitivity and 11 specificity in the clinical setting. Although there have not been any studies using 12 MCP-1 as a biomarker of cisplatin-induced AKI, our previous findings that 13 cisplatin-induced nephrotoxicity increases urinary MCP-1 in rats [12] also support this 14 conclusion. Further, although the concentrations of these markers did not correlate 15 with the Scr levels, our results indicate the possibility that these new urinary biomarkers 16 are more sensitive and specific than Scr for cisplatin-induced AKI.

17 However, our NGAL findings contradict recent reports that it may be an early 18 biomarker of AKI in cancer patients treated with cisplatin-based chemotherapy [17-19]. 19 There are two possible reasons for this discrepancy. First, the NGAL levels may have 20 differed among studies because urine samples are collected and analyzed at different 21 time points. For example, Lin et al. [18] analyzed urine samples between four hours 22 and four days after cisplatin infusion and found that urinary NGAL levels significantly 23 increased between 12 hours and three days later in AKI (+) samples compared with the 24 baseline levels. In contrast, we measured NGAL concentrations at later time points 25 when they would be lower in AKI (+) samples and, thus, more similar to those in AKI

1 (-) samples. In our study, analyzing urine samples at earlier time points was not 2 possible because the patients were prehydrated, so their urine would have been too 3 diluted during the first two or three days after cisplatin administration. Second, the 4 NGAL levels may differ among the studies due to differences in the diagnostic criteria 5 for AKI. Many investigators diagnose AKI using the Risk, Injury, Failure, Loss of 6 kidney function and End-stage kidney disease or Acute Kidney Injury Network 7 classifications, which are based on changes in the Scr levels and urine output. In our 8 study, we used expedient criteria slightly modified from the KDIGO (Kidney Disease: 9 Improving Guideline Outcomes) criteria; if the level of Scr was increased more than 10 1.5-fold compared to the baseline and/or that of BUN was over than 20 mg/dL after the 11 administration of cisplatin, the sample was classified as AKI (+). There are two 12 reasons for why we used the modified KDIGO criteria in this study. First, because the 13 urine outputs of our patients were too high due to the prehydration, we could not 14 accurately diagnose AKI based on the urine output. Second, because the Scr levels are 15 influenced by the muscle mass, it is inadequate to monitor the kidney function based on 16 only the Scr levels, particularly in elderly patients. Hence, we defined the criteria 17 based on the levels of both Scr and BUN. However, further research is needed to 18 determine more specific diagnostic criteria for cisplatin-induced AKI.

Finally, our finding that the AUC-ROC of the combination of KIM-1 and MCP-1 is higher than that of either biomarker alone (Figure 4d) is consistent with previous reports that a combination of two biomarkers may have better diagnostic performance than a single biomarker [20, 21]. However, unlike these previous studies, which used a logistic regression model to combine two biomarkers, we simply summed the concentrations of two biomarkers normalized to their ROC cut-off values, because this would be easier to calculate in the clinical setting. Although a dipstick assay for
 KIM-1 has recently become available [15], there is no similar assay for measuring
 MCP-1 levels quickly and accurately; such an assays could enable early detection and
 improved treatment of cisplatin-induced AKI.

In conclusion, we here showed that urinary KIM-1 and MCP-1, either alone or
in combination, may represent accurate biomarkers of cisplatin-induced AKI in lung
cancer patients. These findings may also facilitate the development of new methods to
monitor kidney function. However, because of the small number of patients in the
present study, larger studies are required in the future to confirm our findings.

1 Acknowledgments

2	This work was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI)		
3	from the Ministry of Education, Science, Culture, Sports, and Technology of Japan		
4	(MEXT); a Grant-in-Aid for Research on Biological Markers for New Drug		
5	Development and Health and Labour Sciences Research Grants from the Ministry of		
6	Health, Labour, and Welfare of Japan (08062855); and a funding program for Next		
7	Generation World-Leading Researchers (LS073 to S.M.) from the Council for Science		
8	and Technology Policy of the Japan Society for the Promotion of Science.		
9			
10	Conflict of interest:		
11	The authors have no conflicts of interest to declare.		
12			
13			
14			

TABLES

Characteristic	n		
Number of patients	11		
Age, mean (SD) (years)	65.9 (10.1) (range: 49–77)		
Sex (male/female)	7/4		
BSA, mean (SD) (m^2)	1.48 (0.19) (range: 1.17-1.72)		
Baseline Scr, mean (SD) (mg/dL)	0.75 (0.26) (range: 0.3–1.3)		
Baseline BUN, mean (SD) (mg/dL)	14.3 (3.9) (range: 8–19)		
Type of lung cancer			
Small-cell	1		
Adenocarcinoma	5		
Squamous cell carcinoma	5		
Tumor stage			
IIIA	8		
IIIB	3		
Cisplatin dosage			
80 mg/m ²	7		
64 mg/m ²	1		
60 mg/m^2	3		
Total cisplatin dosage, mean (SD) (mg)	108.1 (20.1) (range: 77-131)		
Co-administrated drugs			
VNR	10		
ETP	1		
Number of chemotherapy courses			
First	9		
Second	2		
Radiation			
Yes	6		
No	5		

2 Table 1. Patient characteristics

3 Abbreviations: SD, standard deviation; BSA, body surface area; Scr, serum creatinine;

4 BUN, blood urea nitrogen; VNR, vinorelbine; ETP, etoposide.

5

biomarkers in lung cancer patients				
Biomarker	AUC-ROC	n voluo	Cut-off value	
Biomarker	(95% CI)	<i>p</i> -value	(ng/mg creatinine)	
KIM-1	0.858	0.002**	2.45	
KIIVI-1	(0.714–1.000)	0.002**	2.45	
MCP-1	0.850	0.002**	0.26	
IVICF-1	(0.6 51 96–1.00 0 4)	0.002**	0.20	
NGAL	0.608	0.310	17.2	
NGAL	(0.422 - 0.79 + 4)		17.2	

1 Table 2. Receiver operating characteristic curve analyses of kidney function

3 Abbreviations: AUC-ROC, area under the receiver operating characteristic curve; CI,

4 confidence interval; KIM-1, kidney injury molecule-1; MCP-1, monocyte chemotactic

5 protein-1; NGAL, neutrophil gelatinase-associated lipocalin.

6 Statistical analyses were performed using the Mann-Whitney U test. **p<0.01.

7

FIGURE LEGENDS
Figure 1. Detail schedules of the chemotherapy regimens used.
Detailed administration schedules of each regimen, VNR/CDDP or ETP/CDDP, for our
lung cancer patients are shown. As the supportive therapy, maintenance fluid (Soldem
3A®) and saline were injected along with antiemetics (palonosetron and dexamethasone
sodium phosphate). At the first day of chemotherapy, the patients received extensive
continuous infusion of approximately 3,000 mL. The standard dosages of VNR and
ETP were 25 mg/m ² and 100 mg/m ² , respectively. CDDP, cisplatin; VNR, vinorelbine;
ETP, etoposide.

10

1

2

3

4

5

6

7

8

9

12 Figure 2. Changes in biomarker levels in a representative lung cancer patient with 13 cisplatin-induced acute kidney injury.

14 Time-dependent changes in the levels of serum and urinary biomarkers during 15 cisplatin-based chemotherapy in a 49-year-old male patient with stage IIIA non-small 16 cell lung adenocarcinoma. (a) Changes in serum creatinine (Scr; white circle) and 17 blood urea nitrogen (BUN; black circle). Since BUN was greater than 20 mg/dL on 18 day 3, this patient was diagnosed with acute kidney injury (AKI). (b) Changes in 19 urinary levels of kidney injury molecule-1 (KIM-1; white circle), neutrophil 20 gelatinase-associated lipocalin (NGAL; white triangle), and monocyte chemotactic 21 protein-1 (MCP-1; black circle).

22

23 Figure 3. Differences in urinary levels of kidney function biomarkers in lung 24 cancer patients with or without acute kidney injury.

Differences in the urinary levels of kidney injury molecule-1 (KIM-1) (a), monocyte
chemotactic protein-1 (MCP-1) (b), neutrophil gelatinase-associated lipocalin (NGAL)
(c), *N*-acetyl-β-D-glucosaminidase (NAG) (d), and β2-microglobulin (e) in acute kidney
injury (AKI) positive (+) and AKI negative (-) samples from lung cancer patients
treated with cisplatin. The biomarker concentrations were normalized to the urinary
creatinine concentration. Statistical analyses were performed using the Mann-Whitney
U test. **p < 0.01 vs. AKI (-). Horizontal bar indicates the median value.

8

9 Figure 4. Receiver operating characteristic curve analyses of urinary biomarkers 10 of acute kidney injury

11 Receiver operating characteristic (ROC) curves demonstrating the sensitivity and 12 specificity of kidney injury molecule-1 (KIM-1) (a), monocyte chemotactic protein-1 13 (MCP-1) (b), and-neutrophil gelatinase-associated lipocalin (NGAL) (c), and the 14 combination of KIM-1 and MCP-1 (d) with respect to the definition of acute kidney 15 injury (AKI) by serum creatinine or blood urea nitrogen. AUC, area under the curve. 16

1		REFERENCES
2	1.	Lebwohl, D. and R. Canetta, Clinical development of platinum complexes in
3		cancer therapy: an historical perspective and an update. Eur J Cancer, 1998.
4		34 (10): p. 1522-34.
5	2.	Hayes, D.M., et al., High dose cis-platinum diammine dichloride: amelioration
6		of renal toxicity by mannitol diuresis. Cancer, 1977. 39(4): p. 1372-81.
7	3.	Bonventre, J.V., et al., <i>Next-generation biomarkers for detecting kidney toxicity</i> .
8		Nat Biotechnol, 2010. 28 (5): p. 436-40.
9	4.	Yonezawa, A., et al., Association between tubular toxicity of cisplatin and
10		expression of organic cation transporter rOCT2 (Slc22a2) in the rat. Biochem
11 12	F	Pharmacol, 2005. 70 (12): p. 1823-31.
12	5.	Sieber, M., et al., <i>Comparative analysis of novel noninvasive renal biomarkers</i> <i>and metabonomic changes in a rat model of gentamicin nephrotoxicity.</i> Toxicol
14		Sci, 2009. 109 (2): p. 336-49.
15	6.	Ichimura, T., et al., <i>Kidney injury molecule-1: a tissue and urinary biomarker for</i>
16		<i>nephrotoxicant-induced renal injury.</i> Am J Physiol Renal Physiol, 2004. 286 (3):
17		p. F552-63.
18	7.	Ichimura, T., et al., <i>Kidney injury molecule-1 (KIM-1), a putative epithelial cell</i>
19		adhesion molecule containing a novel immunoglobulin domain, is up-regulated
20		in renal cells after injury. J Biol Chem, 1998. 273(7): p. 4135-42.
21	8.	Mishra, J., et al., Identification of neutrophil gelatinase-associated lipocalin as a
22		novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol,
23		2003. 14 (10): p. 2534-43.
24	9.	Mishra, J., et al., Neutrophil gelatinase-associated lipocalin (NGAL) as a
25		biomarker for acute renal injury after cardiac surgery. Lancet, 2005. 365(9466):
26		p. 1231-8.
27	10.	Bonventre, J.V., Kidney injury molecule-1 (KIM-1): a urinary biomarker and
28		<i>much more</i> . Nephrol Dial Transplant, 2009. 24 (11): p. 3265-8.
29	11.	Mishra, J., et al., Neutrophil gelatinase-associated lipocalin: a novel early
30		urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol, 2004. 24(3): p.
31 22	10	307-15. Nichihara K et al. Universe chematica (C.C. matif) lie and 2 (managed)
32 33	12.	Nishihara, K., et al., Urinary chemokine (C-C motif) ligand 2 (monocyte chemotactic protein 1) as a tubular injury marker for early detection of
33 34		<i>chemotactic protein-1) as a tubular injury marker for early detection of cisplatin-induced nephrotoxicity.</i> Biochem Pharmacol, 2013. 85 (4): p. 570-82.
34 35	13.	Rice, J.C., et al., <i>Monocyte chemoattractant protein-1 expression correlates with</i>
36	15.	monocyte infiltration in the post-ischemic kidney. Ren Fail, 2002. 24(6): p.
00		$\frac{1}{10000000000000000000000000000000000$

- 1 703-23.
- 2 14. Vaidya, V.S., et al., *Kidney injury molecule-1 outperforms traditional*3 *biomarkers of kidney injury in preclinical biomarker qualification studies.* Nat
 4 Biotechnol, 2010. 28(5): p. 478-85.
- 5 15. Vaidya, V.S., et al., *A rapid urine test for early detection of kidney injury*. Kidney
 6 Int, 2009. **76**(1): p. 108-14.
- 7 16. Tekce, B.K., et al., *Does the kidney injury molecule-1 predict cisplatin-induced*8 *kidney injury in early stage?* Ann Clin Biochem, 2015. 52(Pt 1): p. 88-94.
- 9 17. Gaspari, F., et al., *Predicting cisplatin-induced acute kidney injury by urinary*10 *neutrophil gelatinase-associated lipocalin excretion: a pilot prospective*11 *case-control study.* Nephron Clin Pract, 2010. 115(2): p. c154-60.
- 12 18. Lin, H.Y., et al., Urinary neutrophil gelatinase-associated lipocalin levels
 13 predict cisplatin-induced acute kidney injury better than albuminuria or urinary
 14 cystatin C levels. Kaohsiung J Med Sci, 2013. 29(6): p. 304-11.
- 15 19. Peres, L.A., et al., Evaluation of the cisplatin nephrotoxicity using the urinary
 16 neutrophil gelatinase-associated lipocalin (NGAL) in patients with head and
 17 neck cancer. J Bras Nefrol, 2014. 36(3): p. 280-8.
- 18 20. Katagiri, D., et al., *Combination of two urinary biomarkers predicts acute kidney*19 *injury after adult cardiac surgery*. Ann Thorac Surg, 2012. 93(2): p. 577-83.
- 20 21. Liang, X.L., et al., Combination of urinary kidney injury molecule-1 and
 21 interleukin-18 as early biomarker for the diagnosis and progressive assessment
 22 of acute kidney injury following cardiopulmonary bypass surgery: a prospective
 23 nested case-control study. Biomarkers, 2010. 15(4): p. 332-9.
- 24
- 25
- 26

2

✤ ETP/CDDP

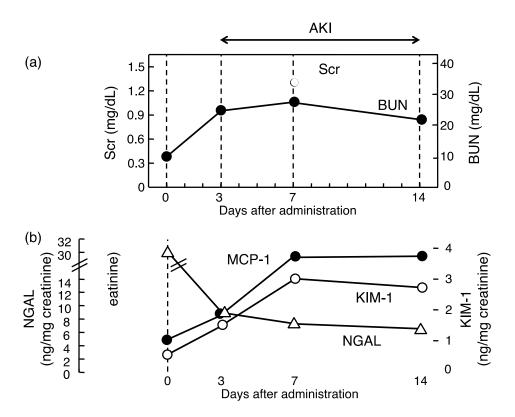
<u>Day 1</u>

Supportive therapy	Chemotherapy		Supportive therapy
Antiemetic + infusion solution total volume 1,000 mL	ETP + CDDP total volume 1,000 mL		Infusion solution total volume 1,000 mL

<u>Days 2, 3</u>

Supportive therapy	Chemotherapy	Supportive therapy
Antiemetic	ETP + CDDP	Infusion solution
total volume 500 mL	total volume 500 mL	total volume 500 mL

✤ VNR/CDDP


<u>Day 1</u>

Supportive therapy	Chemotherapy	Supportive therapy
VNR, antiemetic, + infusion solution total volume 1,250 mL	CDDP total volume 500 mL	Infusion solution total volume 1,000 mL

<u>Days 2, 3</u>

Supportive therapy

Antiemetic +infusion solution total volume 1,000 mL

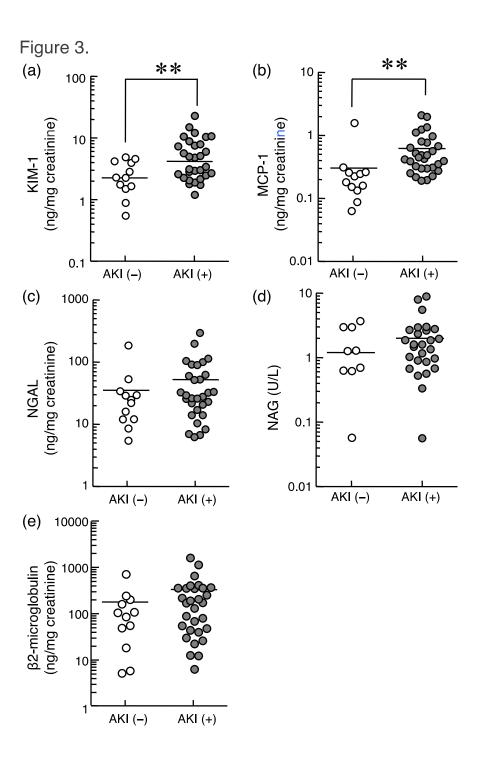
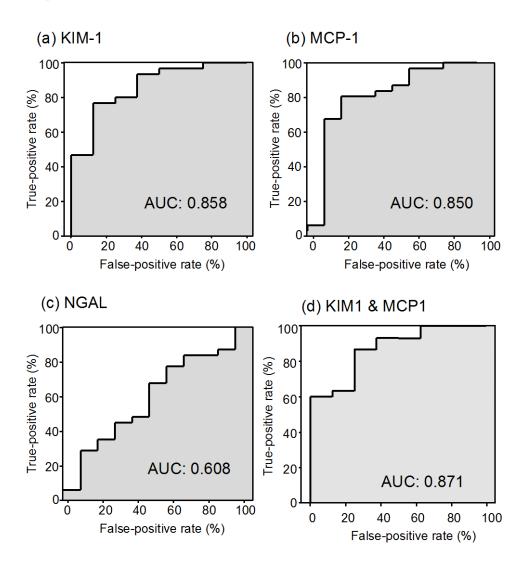
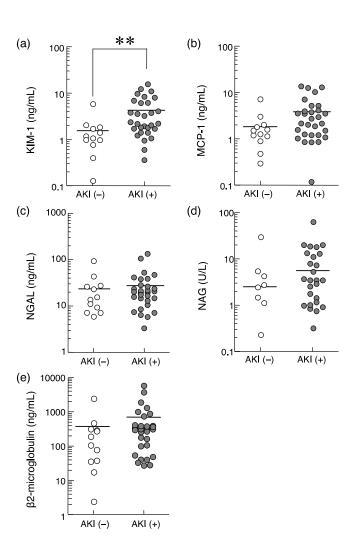
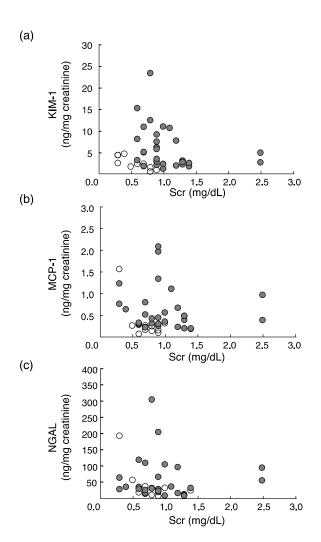
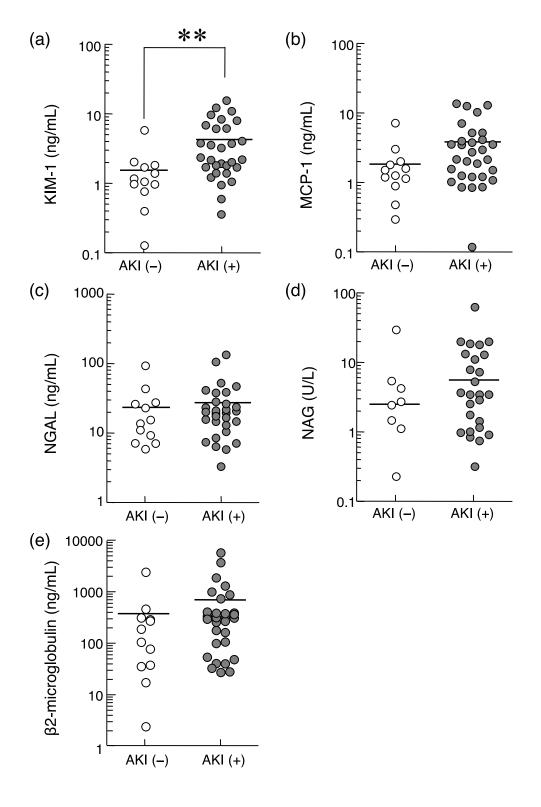
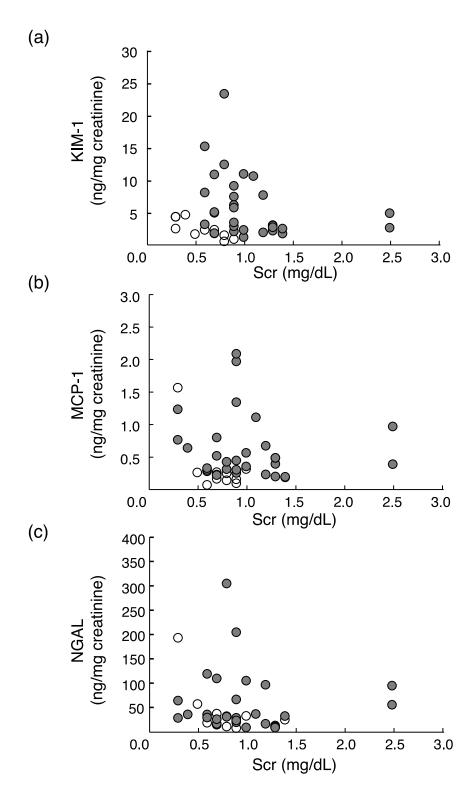




Figure 4.



the median value.


s


circles, AKI (+) samples.

rcles, acute kidney injury (AKI) (-) samples; gray

SF1, Supplementary Figure 1. Differences in the absolute concentrations of urinary biomarkers in lung cancer patients with or without acute kidney injury.

Differences in the absolute urinary levels of kidney injury molecule-1 (KIM-1) (a), monocyte chemotactic protein-1 (MCP-1) (b), neutrophil gelatinase-associated lipocalin (NGAL) (c), *N*-acetyl- β -D-glucosaminidase (NAG) (d), and β 2-microglobulin (e) in acute kidney injury (AKI) positive (+) and AKI negative (–) samples from lung cancer patients treated with cisplatin. Statistical analyses were performed using the Mann-Whitney U test. **p < 0.01 vs. AKI (–). Horizontal bar indicates the median value.

SF2, Supplementary Figure 2. Correlations between the serum creatinine levels and urinary biomarkers.

No correlation between the serum creatinine (Scr) levels and urinary kidney injury molecule-1 (KIM-1) (a), monocyte chemotactic protein-1 (MCP-1) (b), or neutrophil gelatinase-associated lipocalin (NGAL) (c) was observed. White circles, acute kidney injury (AKI) (–) samples; gray circles, AKI (+) samples.