16 research outputs found

    Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance

    Get PDF
    Objective: Insulin resistance develops prior to the onset of overt type 2 diabetes, making its early detection vital. Direct accurate evaluation is currently only possible with complex examinations like the stable isotope-based hyperinsulinemic euglycemic clamp (HIEC). Metabolomic profiling enables the detection of thousands of plasma metabolites, providing a tool to identify novel biomarkers in human obesity. Design: Liquid chromatography mass spectrometry–based untargeted plasma metabolomics was applied in 60 participants with obesity with a large range of peripheral insulin sensitivity as determined via a two-step HIEC with stable isotopes [6,6-2H2]glucose and [1,1,2,3,3-2H5]glycerol. This additionally enabled measuring insulin-regulated lipolysis, which combined with metabolomics, to the knowledge of this research group, has not been reported on before. Results: Several plasma metabolites were identified that significantly correlated with glucose and lipid fluxes, led by plasma (gamma-glutamyl)citrulline, followed by betaine, beta-cryptoxanthin, fructosyllysine, octanylcarnitine, sphingomyelin (d18:0/18:0, d19:0/17:0) and thyroxine. Subsequent machine learning analysis showed that a panel of these metabolites derived from a number of metabolic pathways may be used to predict insulin resistance, dominated by non-essential amino acid citrulline and its metabolite gamma-glutamylcitrulline. Conclusion: This approach revealed a number of plasma metabolites that correlated reasonably well with glycemic and lipolytic flux parameters, measured using gold standard techniques. These metabolites may be used to predict the rate of glucose disposal in humans with obesity to a similar extend as HOMA, thus providing potential novel biomarkers for insulin resistance

    Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition

    Get PDF
    The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.Peer reviewe

    Anti-NDMA-encefalitis

    No full text

    Species- and strain-level assessment using rrn long-amplicons suggests donor’s influence on gut microbial transference via fecal transplants in metabolic syndrome subjects

    No full text
    Fecal microbiota transplantation (FMT) is currently used for treating Clostridium difficile infection and explored for other clinical applications in experimental trials. However, the effectiveness of this therapy could vary, and partly depend on the donor’s bacterial species engraftment, whose evaluation is challenging because there are no cost-effective strategies for accurately tracking the microbe transference. In this regard, the precise identification of bacterial species inhabiting the human gut is essential to define their role in human health unambiguously. We used Nanopore-based device to sequence bacterial rrn operons (16S-ITS-23S) and to reveal species-level abundance changes in the human gut microbiota of a FMT trial. By assessing the donor and recipient microbiota before and after FMT, we further evaluated whether this molecular approach reveals strain-level genetic variation to demonstrate microbe transfer and engraftment. Strict control over sequencing data quality and major microbiota covariates was critical for accurately estimating the changes in gut microbial species abundance in the recipients after FMT. We detected strain-level variation via single-nucleotide variants (SNVs) at rrn regions in a species-specific manner. We showed that it was possible to explore successfully the donor-bacterial strain (e.g., Parabacteroides merdae) engraftment in recipients of the FMT by assessing the nucleotide frequencies at rrn-associated SNVs. Our findings indicate that the engraftment of donors’ microbiota is to some extent correlated with the improvement of metabolic health in recipients and that parameters such as the baseline gut microbiota configuration, sex, and age of donors should be considered to ensure the success of FMT in humans. The study was prospectively registered at the Dutch Trial registry–NTR4488 (https://www.trialregister.nl/trial/4488)

    Insights into the role of the microbiome in obesity and type 2 diabetes

    No full text
    The worldwide prevalence of obesity and type 2 diabetes mellitus (T2DM) continues to rise at an alarming pace. Recently the potential role of the gut microbiome in these metabolic disorders has been identified. Obesity is associated with changes in the composition of the intestinal microbiota, and the obese microbiome seems to be more efficient in harvesting energy from the diet. Lean male donor fecal microbiota transplantation (FMT) in males with metabolic syndrome resulted in a significant improvement in insulin sensitivity in conjunction with an increased intestinal microbial diversity, including a distinct increase in butyrate-producing bacterial strains. Such differences in gut microbiota composition might function as early diagnostic markers for the development of T2DM in high-risk patients. Products of intestinal microbes such as butyrate may induce beneficial metabolic effects through enhancement of mitochondrial activity, prevention of metabolic endotoxemia, and activation of intestinal gluconeogenesis via different routes of gene expression and hormone regulation. Future research should focus on whether bacterial products (like butyrate) have the same effects as the intestinal bacteria that produce it, in order to ultimately pave the way for more successful interventions for obesity and T2DM. The rapid development of the currently available techniques, including use of fecal transplantations, has already shown promising results, so there is hope for novel therapies based on the microbiota in the futur

    Disentangle beneficial effects of strain engraftment after fecal microbiota transplantation in subjects with MetSyn

    No full text
    Fecal Microbiota Transplantation (FMT) has emerged as a potential modality for mitigating microbiome-associated diseases. Despite this potential, the precise causal pathways by which specific gut microbiota strains induce remission remain inadequately elucidated. In this study, we aimed to discern the impact of engraftment of donor-infused strains on alterations in plasma metabolites, subsequently contributing to the amelioration of clinical parameters involved in subjects with metabolic syndrome (MetSyn) receiving an FMT. We observed that a higher fraction of donor strains engrafted in the recipient is correlated to a reduction in diastolic blood pressure and found specific strain associations through canonical correlation analysis. Integrating the metabolomics profile shows that engraftment of Collinsella aerofaciens and Fusocatenibacter saccharovorans was related to a reduction in 2-oxoarginine in plasma, which was subsequently correlated to a reduction in diastolic blood pressure. In conclusion, we applied a novel framework to elucidate on the complex and heterogenous FMT intervention, establishing a connection between engrafted microbiota and clinical outcome parameters. Our findings underscore the potential therapeutic efficacy of FMT in ameliorating MetSyn, demonstrating a potential contribution of microbial strain engraftment to the improvement of MetSyn via modulation of circulating metabolites

    Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome

    Get PDF
    Dysbiosis of the intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We performed a phase I/II dose-finding and safety study on the effect of oral intake of the anaerobic butyrogenic strain Anaerobutyricum soehngenii on glucose metabolism in 24 subjects with metabolic syndrome. We found that treatment with A. soehngenii was safe and observed a significant correlation between the measured fecal abundance of administered A. soehngenii and improvement in peripheral insulin sensitivity after 4 weeks of treatment. This was accompanied by an altered microbiota composition and a change in bile acid metabolism. Finally, we show that metabolic response upon administration of A. soehngenii (defined as improved insulin sensitivity 4 weeks after A. soehngenii intake) is dependent on microbiota composition at baseline. These data in humans are promising, but additional studies are needed to reproduce our findings and to investigate long-term effects, as well as other modes of delivery.Peer reviewe
    corecore