212 research outputs found

    Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance

    Get PDF
    Objective: Insulin resistance develops prior to the onset of overt type 2 diabetes, making its early detection vital. Direct accurate evaluation is currently only possible with complex examinations like the stable isotope-based hyperinsulinemic euglycemic clamp (HIEC). Metabolomic profiling enables the detection of thousands of plasma metabolites, providing a tool to identify novel biomarkers in human obesity. Design: Liquid chromatography mass spectrometry–based untargeted plasma metabolomics was applied in 60 participants with obesity with a large range of peripheral insulin sensitivity as determined via a two-step HIEC with stable isotopes [6,6-2H2]glucose and [1,1,2,3,3-2H5]glycerol. This additionally enabled measuring insulin-regulated lipolysis, which combined with metabolomics, to the knowledge of this research group, has not been reported on before. Results: Several plasma metabolites were identified that significantly correlated with glucose and lipid fluxes, led by plasma (gamma-glutamyl)citrulline, followed by betaine, beta-cryptoxanthin, fructosyllysine, octanylcarnitine, sphingomyelin (d18:0/18:0, d19:0/17:0) and thyroxine. Subsequent machine learning analysis showed that a panel of these metabolites derived from a number of metabolic pathways may be used to predict insulin resistance, dominated by non-essential amino acid citrulline and its metabolite gamma-glutamylcitrulline. Conclusion: This approach revealed a number of plasma metabolites that correlated reasonably well with glycemic and lipolytic flux parameters, measured using gold standard techniques. These metabolites may be used to predict the rate of glucose disposal in humans with obesity to a similar extend as HOMA, thus providing potential novel biomarkers for insulin resistance

    Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects

    Get PDF
    Background: Gut microbiota-derived short-chain fatty acids (SCFAs) have been associated with beneficial metabolic effects. However, the direct effect of oral butyrate on metabolic parameters in humans has never been studied. In this first in men pilot study, we thus treated both lean and metabolic syndrome male subjects with oral sodium butyrate and investigated the effect on metabolism. Methods: Healthy lean males (n = 9) and metabolic syndrome males (n = 10) were treated with oral 4 g of sodium butyrate daily for 4 weeks. Before and after treatment, insulin sensitivity was determined by a two-step hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose. Brown adipose tissue (BAT) uptake of glucose was visualized using 18F-FDG PET-CT. Fecal SCFA and bile acid concentrations as well as microbiota composition were determined before and after treatment. Results: Oral butyrate had no effect on plasma and fecal butyrate levels after treatment, but did alter other SCFAs in both plasma and feces. Moreover, only in healthy lean subjects a significant improvement was observed in both peripheral (median Rd: from 71 to 82 μmol/kg min, p < 0.05) and hepatic insulin sensitivity (EGP suppression from 75 to 82% p < 0.05). Although BAT activity was significantly higher at baseline in lean (SUVmax: 12.4 ± 1.8) compared with metabolic syndrome subjects (SUVmax: 0.3 ± 0.8, p < 0.01), no significant effect following butyrate treatment on BAT was observed in either group (SUVmax lean to 13.3 ± 2.4 versus metabolic syndrome subjects to 1.2 ± 4.1). Conclusions: Oral butyrate treatment beneficially affects glucose metabolism in lean but not metabolic syndrome subjects, presumably due to an altered SCFA handling in insulin-resistant subjects. Although preliminary, these first in men findings argue against oral butyrate supplementation as treatment for glucose regulation in human subjects with type 2 diabetes mellitus

    Variable responses of human microbiomes to dietary supplementation with resistant starch

    Get PDF
    Abstract Background The fermentation of dietary fiber to various organic acids is a beneficial function provided by the microbiota in the human large intestine. In particular, butyric acid contributes to host health by facilitating maintenance of epithelial integrity, regulating inflammation, and influencing gene expression in colonocytes. We sought to increase the concentration of butyrate in 20 healthy young adults through dietary supplementation with resistant starch (unmodified potato starch—resistant starch (RS) type 2). Methods Fecal samples were collected from individuals to characterize butyrate concentration via liquid chromatography and composition of the microbiota via surveys of 16S rRNA-encoding gene sequences from the Illumina MiSeq platform. Random Forest and LEfSe analyses were used to associate responses in butyrate production to features of the microbiota. Results RS supplementation increased fecal butyrate concentrations in this cohort from 8 to 12 mmol/kg wet feces, but responses varied widely between individuals. Individuals could be categorized into three groups based upon butyrate concentrations before and during RS: enhanced, high, and low (n = 11, 3, and 6, respectively). Fecal butyrate increased by 67 % in the enhanced group (from 9 to 15 mmol/kg), while it remained ≥11 mmol/kg in the high group and ≤8 mmol/kg in the low group. Microbiota analyses revealed that the relative abundance of RS-degrading organisms—Bifidobacterium adolescentis or Ruminococcus bromii—increased from ~2 to 9 % in the enhanced and high groups, but remained at ~1.5 % in the low group. The lack of increase in RS-degrading bacteria in the low group may explain why there was no increase in fecal butyrate in response to RS. The microbiota of individuals in the high group were characterized by an elevated abundance of the butyrogenic microbe Eubacterium rectale (~6 % in high vs. 3 % in enhanced and low groups) throughout the study. Conclusions We document the heterogeneous responses in butyrate concentrations upon RS supplementation and identify characteristic of the microbiota that appear to underlie this variation. This study complements and extends other studies that call for personalized approaches to manage beneficial functions provided by gut microbiomes.http://deepblue.lib.umich.edu/bitstream/2027.42/134598/1/40168_2016_Article_178.pd

    Temporal Accumulation and Decision Processes in the Duration Bisection Task Revealed by Contingent Negative Variation

    Get PDF
    The duration bisection paradigm is a classic task used to examine how humans and other animals perceive time. Typically, participants first learn short and long anchor durations and are subsequently asked to classify probe durations as closer to the short or long anchor duration. However, the specific representations of time and the decision rules applied in this task remain the subject of debate. For example, researchers have questioned whether participants actually use representations of the short and long anchor durations in the decision process rather than merely a response threshold that is derived from those anchor durations. Electroencephalographic (EEG) measures, like the contingent negative variation (CNV), can provide information about the perceptual and cognitive processes that occur between the onset of the timing stimulus and the motor response. The CNV has been implicated as an electrophysiological marker of interval timing processes such as temporal accumulation, representation of the target duration, and the decision that the target duration has been attained. We used the CNV to investigate which durations are involved in the bisection categorization decision. The CNV increased in amplitude up to the value of the short anchor, remained at a constant level until about the geometric mean (GM) of the short and long anchors, and then began to resolve. These results suggest that the short anchor and the GM of the short and long anchors are critical target durations used in the bisection categorization decision process. In addition, larger mean N1P2 amplitude differences were associated with larger amplitude CNVs, which may reflect the participant’s precision in initiating timing on each trial across a test session. Overall, the results demonstrate the value of using scalp-recorded EEG to address basic questions about interval timing

    Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition

    Get PDF
    The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.Peer reviewe

    Risk-taking behavior in juvenile myoclonic epilepsy

    Get PDF
    Objective Patients with juvenile myoclonic epilepsy (JME) often present with risk-taking behavior, suggestive of frontal lobe dysfunction. Recent studies confirm functional and microstructural changes within the frontal lobes in JME. This study aimed at characterizing decision-making behavior in JME and its neuronal correlates using functional magnetic resonance imaging (fMRI). Methods We investigated impulsivity in 21 JME patients and 11 controls using the Iowa Gambling Task (IGT), which measures decision making under ambiguity. Performance on the IGT was correlated with activation patterns during an fMRI working memory task. Results Both patients and controls learned throughout the task. Post hoc analysis revealed a greater proportion of patients with seizures than seizure-free patients having difficulties in advantageous decision making, but no difference in performance between seizure-free patients and controls. Functional imaging of working memory networks showed that overall poor IGT performance was associated with an increased activation in the dorsolateral prefrontal cortex (DLPFC) in JME patients. Impaired learning during the task and ongoing seizures were associated with bilateral medial prefrontal cortex (PFC) and presupplementary motor area, right superior frontal gyrus, and left DLPFC activation. Significance Our study provides evidence that patients with JME and ongoing seizures learn significantly less from previous experience. Interictal dysfunction within "normal" working memory networks, specifically, within the DLPFC and medial PFC structures, may affect their ability to learn.© 2013 International League Against Epilepsy.Wellcome Trust; Big Lottery Fund; Wolfson Trust, and the Epilepsy Society; UCLH/UCL; Department of Health's NIHR Biomedical Research Centres' funding scheme; DFG fellowshi
    corecore