536 research outputs found

    Angular versus radial correlation effects on momentum distributions of light two-electron ions

    Full text link
    We investigate different correlation mechanisms for two-electron systems and compare their respective effects on various electron distributions. The simplicity of the wave functions used allows for the derivation of closed-form analytical expressions for all electron distributions. Among other features, it is shown that angular and radial correlation mechanisms have opposite effects on Compton profiles at small momenta.Comment: 22 pages, 5 figures, 3 tabl

    Berry phases for the nonlocal Gross-Pitaevskii equation with a quadratic potential

    Full text link
    A countable set of asymptotic space -- localized solutions is constructed by the complex germ method in the adiabatic approximation for the nonstationary Gross -- Pitaevskii equation with nonlocal nonlinearity and a quadratic potential. The asymptotic parameter is 1/T, where T1T\gg1 is the adiabatic evolution time. A generalization of the Berry phase of the linear Schr\"odinger equation is formulated for the Gross-Pitaevskii equation. For the solutions constructed, the Berry phases are found in explicit form.Comment: 13 pages, no figure

    Non-Linear Vibrations in Nuclei

    Full text link
    We have perfomed Time Dependant Hartree-Fock (TDHF) calculations on the non linear response of nuclei. We have shown that quadrupole (and dipole) motion produces monopole (and quadrupole) oscillations in all atomic nuclei. We have shown that these findings can be interpreted as a large coupling between one and two phonon states leading to large anharmonicities.Comment: 4 pages, 3 figure

    Alfv\'en Reflection and Reverberation in the Solar Atmosphere

    Full text link
    Magneto-atmospheres with Alfv\'en speed [a] that increases monotonically with height are often used to model the solar atmosphere, at least out to several solar radii. A common example involves uniform vertical or inclined magnetic field in an isothermal atmosphere, for which the Alfv\'en speed is exponential. We address the issue of internal reflection in such atmospheres, both for time-harmonic and for transient waves. It is found that a mathematical boundary condition may be devised that corresponds to perfect absorption at infinity, and, using this, that many atmospheres where a(x) is analytic and unbounded present no internal reflection of harmonic Alfv\'en waves. However, except for certain special cases, such solutions are accompanied by a wake, which may be thought of as a kind of reflection. For the initial-value problem where a harmonic source is suddenly switched on (and optionally off), there is also an associated transient that normally decays with time as O(t-1) or O(t-1 ln t), depending on the phase of the driver. Unlike the steady-state harmonic solutions, the transient does reflect weakly. Alfv\'en waves in the solar corona driven by a finite-duration train of p-modes are expected to leave such transients.Comment: Accepted by Solar Physic

    Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems

    Full text link
    Recent trends of ab initio studies and progress in methodologies for electronic structure calculations of strongly correlated electron systems are discussed. The interest for developing efficient methods is motivated by recent discoveries and characterizations of strongly correlated electron materials and by requirements for understanding mechanisms of intriguing phenomena beyond a single-particle picture. A three-stage scheme is developed as renormalized multi-scale solvers (RMS) utilizing the hierarchical electronic structure in the energy space. It provides us with an ab initio downfolding of the global band structure into low-energy effective models followed by low-energy solvers for the models. The RMS method is illustrated with examples of several materials. In particular, we overview cases such as dynamics of semiconductors, transition metals and its compounds including iron-based superconductors and perovskite oxides, as well as organic conductors of kappa-ET type.Comment: 44 pages including 38 figures, to appear in J. Phys. Soc. Jpn. as an invited review pape

    Uniform electron gases

    Full text link
    We show that the traditional concept of the uniform electron gas (UEG) --- a homogeneous system of finite density, consisting of an infinite number of electrons in an infinite volume --- is inadequate to model the UEGs that arise in finite systems. We argue that, in general, a UEG is characterized by at least two parameters, \textit{viz.} the usual one-electron density parameter ρ\rho and a new two-electron parameter η\eta. We outline a systematic strategy to determine a new density functional E(ρ,η)E(\rho,\eta) across the spectrum of possible ρ\rho and η\eta values.Comment: 8 pages, 2 figures, 5 table

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Kinetic energy bounds for particles confined in spherically-symmetric traps with non-standard dimensions

    Get PDF
    The kinetic energy of non-relativistic single-particle systems with arbitrary D-dimensional central potentials is found to be bounded from below by means of the orbital hyperangular quantum number, the dimensionality and some radial and logarithmic expectation values of the form langrkrang and langrk (ln r)mrang. Beyond the intrinsic physico-mathematical interest of this problem, we want to contribute to the current development of the theory of independent particles confined in spherically symmetric traps with non-standard dimensions. The latter has been motivated by the recent experimental achievements of the evaporative cooling of dilute (i.e. almost non-interacting) fermions in magnetic traps.We are very grateful for partial support from Junta de Andalucía (under the grants FQM-0207 and FQM-481), Ministerio de Educación y Ciencia (under the project FIS2005-00973), and the European Research Network NeCCA (under the project INTAS-03-51-6637). RGF acknowledges the support of Junta de Andalucía under the program of Retorno de Investigadores a Centros de Investigación Andaluces, and PSM the support of Ministerio de Educación y Ciencia under the program FPU
    corecore