4,045 research outputs found
Synthesizing Diabetic Foot Ulcer Images with Diffusion Model
Diabetic Foot Ulcer (DFU) is a serious skin wound requiring specialized care.
However, real DFU datasets are limited, hindering clinical training and
research activities. In recent years, generative adversarial networks and
diffusion models have emerged as powerful tools for generating synthetic images
with remarkable realism and diversity in many applications. This paper explores
the potential of diffusion models for synthesizing DFU images and evaluates
their authenticity through expert clinician assessments. Additionally,
evaluation metrics such as Frechet Inception Distance (FID) and Kernel
Inception Distance (KID) are examined to assess the quality of the synthetic
DFU images. A dataset of 2,000 DFU images is used for training the diffusion
model, and the synthetic images are generated by applying diffusion processes.
The results indicate that the diffusion model successfully synthesizes visually
indistinguishable DFU images. 70% of the time, clinicians marked synthetic DFU
images as real DFUs. However, clinicians demonstrate higher unanimous
confidence in rating real images than synthetic ones. The study also reveals
that FID and KID metrics do not significantly align with clinicians'
assessments, suggesting alternative evaluation approaches are needed. The
findings highlight the potential of diffusion models for generating synthetic
DFU images and their impact on medical training programs and research in wound
detection and classification.Comment: 8 pages, 3 figures, 6th Workshop on AI for Aging, Rehabilitation and
Intelligent Assisted Living at European Conference on Machine Learning,
Italy, 202
Bounds on from Precision LEP Measurements
The parity violating but CP conserving anomalous three-gauge-boson coupling
induces a universal contribution to the left-handed coupling of the
boson to fermions. We find that the LEP measurements of the partial widths
and lepton forward-backward asymmetries are sufficiently precise to place a
bound of order less than . This bound is significantly
better than what can be obtained at present from rare and meson decays.Comment: Phys. Lett. B333 (1994) 207. A few minor errors in the table are
corrected and updated experimental and theoretical numbers are used. The
conclusions are unchanged. These changes will appear in an erratum to the
published pape
The DRIFT Dark Matter Experiments
The current status of the DRIFT (Directional Recoil Identification From
Tracks) experiment at Boulby Mine is presented, including the latest limits on
the WIMP spin-dependent cross-section from 1.5 kg days of running with a
mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with
ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale
directional Dark Matter detector.Comment: Proceedings of the 3rd International conference on Directional
Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201
VHMPID: a new detector for the ALICE experiment at LHC
This article presents the basic idea of VHMPID, an upgrade detector for the
ALICE experiment at LHC, CERN. The main goal of this detector is to extend the
particle identification capabilities of ALICE to give more insight into the
evolution of the hot and dense matter created in Pb-Pb collisions. Starting
from the physics motivations and working principles the challenges and current
status of development is detailed.Comment: 4 pages, 6 figures. To be published in EPJ Web of Conference
A unified model for holistic power usage in cloud datacenter servers
Cloud datacenters are compute facilities formed by hundreds and thousands of heterogeneous servers requiring significant power requirements to operate effectively. Servers are composed by multiple interacting sub-systems including applications, microelectronic processors, and cooling which reflect their respective power profiles via different parameters. What is presently unknown is how to accurately model the holistic power usage of the entire server when including all these sub-systems together. This becomes increasingly challenging when considering diverse utilization patterns, server hardware characteristics, air and liquid cooling techniques, and importantly quantifying the non-electrical energy cost imposed by cooling operation. Such a challenge arises due to the need for multi-disciplinary expertise required to study server operation holistically. This work provides a unified model for capturing holistic power usage within Cloud datacenter servers. Constructed through controlled laboratory experiments, the model captures the relationship of server power usage between software, hardware, and cooling agnostic of architecture and cooling type (air and liquid). An exciting prospect is the ability to quantify the amount of non-electrical power consumed through cooling, allowing for more realistic and accurate server power profiles. This work represents the first empirically supported analysis and modeling of holistic power usage for Cloud datacenter servers, and bridges a significant gap between computer science and mechanical engineering research. Model validation through experiments demonstrates an average standard error of 3% for server power usage within both air and liquid cooled environments
The improvement of the best practice guidelines for preimplantation genetic diagnosis of cystic fibrosis: toward an international consensus
Cystic fibrosis (CF) is one of the most common indications for preimplantation genetic diagnosis (PGD) for single gene disorders, giving couples the opportunity to conceive unaffected children without having to consider termination of pregnancy. However, there are no available standardized protocols, so that each center has to develop its own diagnostic strategies and procedures. Furthermore, reproductive decisions are complicated by the diversity of disease-causing variants in the CFTR (cystic fibrosis transmembrane conductance regulator) gene and the complexity of correlations between genotypes and associated phenotypes, so that attitudes and practices toward the risks for future offspring can vary greatly between countries. On behalf of the EuroGentest Network, eighteen experts in PGD and/or molecular diagnosis of CF from seven countries attended a workshop held in Montpellier, France, on 14 December 2011. Building on the best practice guidelines for amplification-based PGD established by ESHRE (European Society of Human Reproduction and Embryology), the goal of this meeting was to formulate specific guidelines for CF-PGD in order to contribute to a better harmonization of practices across Europe. Different topics were covered including variant nomenclature, inclusion criteria, genetic counseling, PGD strategy and reporting of results. The recommendations are summarized here, and updated information on the clinical significance of CFTR variants and associated phenotypes is presented
Recent evolution of the NF-ÎșB and inflammasome regulating protein POP2 in primates
<p>Abstract</p> <p>Background</p> <p>Pyrin-only protein 2 (POP2) is a small human protein comprised solely of a pyrin domain that inhibits NF-ÎșB p65/RelA and blocks the formation of functional IL-1ÎČ processing inflammasomes. Pyrin proteins are abundant in mammals and several, like POP2, have been linked to activation or regulation of inflammatory processes. Because <it>POP2 </it>knockout mice would help probe the biological role of inflammatory regulation, we thus considered whether <it>POP2 </it>is common in the mammalian lineage.</p> <p>Results</p> <p>BLAST searches revealed that <it>POP2 </it>is absent from the available genomes of not only mice and rats, but those of other domestic mammals and New World monkeys as well. <it>POP2 </it>is however present in the genome of the primate species most closely related to humans including <it>Pan troglodytes </it>(chimpanzees), <it>Macaca mulatta </it>(rhesus macaques) and others. Interestingly, chimpanzee POP2 is identical to human POP2 (huPOP2) at both the DNA and protein level. Macaque POP2 (mqPOP2), although highly conserved is not identical to the human sequence; however, both functions of the human protein are retained. Further, <it>POP2 </it>appears to have arisen in the mammalian genome relatively recently (~25 mya) and likely derived from retrogene insertion of <it>NLRP2</it>.</p> <p>Conclusion</p> <p>Our findings support the hypothesis that the NLR loci of mammals, encoding proteins involved in innate and adaptive immunity as well as mammalian development, have been subject to recent and strong selective pressures. Since POP2 is capable of regulating signaling events and processes linked to innate immunity and inflammation, its presence in the genomes of hominids and Old World primates further suggests that additional regulation of these signals is important in these species.</p
Background Assay and Rejection in DRIFT
The DRIFT-IId dark matter detector is a m3-scale low-pressure TPC with directional sensitivity to WIMP-induced nuclear recoils. Its primary backgrounds were due to alpha decays from contamination on the central cathode. Efforts to reduce these backgrounds led to replacing the 20 ÎŒm wire central cathode with one constructed from 0.9 ÎŒm aluminized mylar, which is almost totally transparent to alpha particles. Detailed modeling of the nature and origin of the remaining backgrounds led to an in-situ, ppt-sensitive assay of alpha decay backgrounds from the central cathode. This led to further improvements in the thin-film cathode resulting in over 2 orders of magnitude reduction in backgrounds compared to the wire cathode. Finally, the addition of O2 to CS2 gas was found to produce multiple species of electronegative charge carriers, providing a method to determine the absolute position of nuclear recoils and reject all known remaining backgrounds while retaining a high efficiency for nuclear recoil detection
Measurement of directional range components of nuclear recoil tracks in a fiducialised dark matter detector
We present results from the first measurement of axial range components of fiducialized neutron induced nuclear recoil tracks using the DRIFT directional dark matter detector. Nuclear recoil events are fiducialized in the DRIFT experiment using temporal charge carrier separations between different species of anions in 30:10:1 Torr of CS:CF:O gas mixture. For this measurement, neutron-induced nuclear recoil tracks were generated by exposing the detector to Cf source from different directions. Using these events, the sensitivity of the detector to the expected axial directional signatures were investigated as the neutron source was moved from one detector axis to another. Results obtained from these measurements show clear sensitivity of the DRIFT detector to the axial directional signatures in this fiducialization gas mode
- âŠ