42 research outputs found

    Barnase fusion as a tool to determine the crystal structure of the small disulfide-rich protein McoEeTI

    No full text
    Niemann H, Schmoldt HU, Wentzel A, Kolmar H, Heinz DW. Barnase fusion as a tool to determine the crystal structure of the small disulfide-rich protein McoEeTI. J Mol Biol. 2006;356(1):1-8

    Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms

    No full text
    Dynamins form a family of multidomain GTPases involved in endocytosis, vesicle trafficking and maintenance of mitochondrial morphology. In contrast to the classical switch GTPases, a force-generating function has been suggested for dynamins. Here we report the 2.3 Å crystal structure of the nucleotide-free and GDP-bound GTPase domain of Dictyostelium discoideum dynamin A. The GTPase domain is the most highly conserved region among dynamins. The globular structure contains the G-protein core fold, which is extended from a six-stranded β-sheet to an eight-stranded one by a 55 amino acid insertion. This topologically unique insertion distinguishes dynamins from other subfamilies of GTP-binding proteins. An additional N-terminal helix interacts with the C-terminal helix of the GTPase domain, forming a hydrophobic groove, which could be occupied by C-terminal parts of dynamin not present in our construct. The lack of major conformational changes between the nucleotide-free and the GDP-bound state suggests that mechanochemical rearrangements in dynamin occur during GTP binding, GTP hydrolysis or phosphate release and are not linked to loss of GDP

    The formation of new nucleoli during macronuclear development of the hypotrichous ciliate Stylonychia lemnae visualized by in situ hybridization

    No full text
    Maercker C, Harjes P, Neben M, Niemann H, Sianidis G, Lipps HJ. The formation of new nucleoli during macronuclear development of the hypotrichous ciliate Stylonychia lemnae visualized by in situ hybridization. Chromosome Res. 1997;5(5):333-335

    Fold and function of the InlB B-repeat

    No full text
    Host cell invasion by the facultative intracellular pathogen Listeria monocytogenes requires the invasion protein InlB in many cell types. InlB consists of an N-terminal internalin domain that binds the host cell receptor tyrosine kinase Met and C-terminal GW domains that bind to glycosaminoglycans (GAGs). Met binding and activation is required for host cell invasion, while the interaction between GW domains and GAGs enhances this effect. Soluble InlB elicits the same cellular phenotypes as the natural Met ligand hepatocyte growth factor/scatter factor (HGF/SF), e.g. cell scatter. So far, little is known about the central part of InlB, the B-repeat. Here we present a structural and functional characterization of the InlB B-repeat. The crystal structure reveals a variation of the β-grasp fold that is most similar to small ubiquitin-like modifiers (SUMOs). However, structural similarity also suggests a potential evolutionary relation to bacterial mucin-binding proteins. The B-repeat defines the prototype structure of a hitherto uncharacterized domain present in over a thousand bacterial proteins. Generally, this domain probably acts as a spacer or a receptor-binding domain in extracellular multi-domain proteins. In cellular assays the B-repeat acts synergistically with the internalin domain conferring to it the ability to stimulate cell motility. Thus, the B-repeat probably binds a further host cell receptor and thereby enhances signaling downstream of Met

    INORGANIC CLUSTER COMPOUNDS AS MODELS FOR THE STRUCTURE OF ACTIVE-SITES IN PROMOTED HYDRODESULFURIZATION CATALYSTS

    No full text
    TOPSOE H, CLAUSEN BS, TOPSOE NY, et al. INORGANIC CLUSTER COMPOUNDS AS MODELS FOR THE STRUCTURE OF ACTIVE-SITES IN PROMOTED HYDRODESULFURIZATION CATALYSTS. JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I. 1987;83(7):2157-2167

    Crystal structure of a dynamin GTPase domain

    No full text
    Dynamins form a family of multidomain GTPases involved in endocytosis, vesicle trafficking and maintenance of mitochondrial morphology. In contrast to the classical switch GTPases, a force-generating function has been suggested for dynamins. Here we report the 2.3 Ă… crystal structure of the nucleotide-free and GDP-bound GTPase domain of Dictyostelium discoideum dynamin A. The GTPase domain is the most highly conserved region among dynamins. The globular structure contains the G-protein core fold, which is extended from a six-stranded Ăź-sheet to an eight-stranded one by a 55 amino acid insertion. This topologically unique insertion distinguishes dynamins from other subfamilies of GTP-binding proteins. An additional N-terminal helix interacts with the C-terminal helix of the GTPase domain, forming a hydrophobic groove, which could be occupied by C-terminal parts of dynamin not present in our construct. The lack of major conformational changes between the nucleotide-free and the GDP-bound state suggests that mechanochemical rearrangements in dynamin occur during GTP binding, GTP hydrolysis or phosphate release and are not linked to loss of GDP

    Crystal structure of a dynamin GTPase domain

    No full text
    Dynamins form a family of multidomain GTPases involved in endocytosis, vesicle trafficking and maintenance of mitochondrial morphology. In contrast to the classical switch GTPases, a force-generating function has been suggested for dynamins. Here we report the 2.3 Ă… crystal structure of the nucleotide-free and GDP-bound GTPase domain of Dictyostelium discoideum dynamin A. The GTPase domain is the most highly conserved region among dynamins. The globular structure contains the G-protein core fold, which is extended from a six-stranded Ăź-sheet to an eight-stranded one by a 55 amino acid insertion. This topologically unique insertion distinguishes dynamins from other subfamilies of GTP-binding proteins. An additional N-terminal helix interacts with the C-terminal helix of the GTPase domain, forming a hydrophobic groove, which could be occupied by C-terminal parts of dynamin not present in our construct. The lack of major conformational changes between the nucleotide-free and the GDP-bound state suggests that mechanochemical rearrangements in dynamin occur during GTP binding, GTP hydrolysis or phosphate release and are not linked to loss of GDP

    The dynamin A ring complex: molecular organisation and nucleotide-dependent conformational changes

    No full text
    Here we show that Dictyostelium discoideum dynamin A is a fast GTPase, binds to negatively charged lipids, and self-assembles into rings and helices in a nucleotide-dependent manner, similar to human dynamin-1. Chemical modification of two cysteine residues, positioned in the middle domain and GTPase effector domain (GED), leads to altered assembly properties and the stabilization of a highly regular ring complex. Single particle analysis of this dynamin A* ring complex led to a three-dimensional map, which shows that the nucleotide-free complex consists of two layers with 11-fold symmetry. Our results reveal the molecular organization of the complex and indicate the importance of the middle domain and GED for the assembly of dynamin family proteins. Nucleotide-dependent changes observed with the unmodified and modified protein support a mechanochemical action of dynamin, in which tightening and stretching of a helix contribute to membrane fission

    Single-molecule FRET and molecular dynamics simulations reveal early activation steps of MET receptor by Listeria monocytogenes

    No full text
    The human growth factor receptor MET is a receptor tyrosine kinase involved in cell proliferation, migration, and survival. MET is also hijacked by the intracellular pathogen Listeria monocytogenes. Its invasion protein, internalin B (InlB), binds to MET and promotes the formation of a signaling dimer that triggers the internalization of the pathogen. Here, we use a combination of structural biology, modeling, molecular dynamics simulations, and in situ single-molecule Förster resonance energy transfer (smFRET) experiments to elucidate the early events in MET activation by Listeria. Simulations show that InlB binding stabilizes MET in a conformation that promotes dimer formation. smFRET identifies the organization of the in situ signaling dimer. Further MD simulations of the dimer model are in quantitative agreement with smFRET. We accurately describe the structural dynamics underpinning an important cellular event and introduce a powerful methodological pipeline applicable to studying the activation of other plasma membrane receptors
    corecore