2,096 research outputs found

    Gyro orbit simulations of neutral beam injection in Wendelstein 7-X

    Get PDF
    Simulations exploring neutral beam operation in Wendelstein 7-X (W7-X) at reduced magnetic field are performed using a newly implemented gyro orbit model in the BEAMS3D code. Operation at field strengths below the nominal 2.5 T are seen as a path to explore both high beta plasmas and as a means to access magnetic configurations not possible at 2.5 T. As the field strength becomes smaller, the gyro radius for 55 keV fast protons grows from ∼1 cm{\sim}1\,\mathrm{cm} at 2.5 T to ∼5 cm{\sim}5\,\mathrm{cm} at 0.75 T in a device with minor radius ∼50 cm{\sim}50\,\mathrm{cm} bringing into question the applicability of the gyro center approximation. To address this a gyro orbit model was implemented in the BEAMS3D code. Agreement is found between the gyro center and gyro orbit models in a circular cross section tokamak equilibrium at high field. A set of W7-X equilibria are assessed with fixed density and temperature profiles but decreasing magnetic field strength (increasing plasma beta). Neutral beam deposition is found to be mostly unaffected with changes in the core of the plasma associated with the Shafranov-shift. In general good agreement is found between gyro orbit and gyro center simulations at 2.5 T. Both models indicate increasing losses with decreasing magnetic field strength with the gyro orbit losses being higher at all field strengths. Gyro orbit simulations to the first wall of W7-X show a change in loss pattern with decreasing magnetic field strength. A preliminary assessment of losses to fast ion loss detectors are made

    The Signal Sequence Receptor Has a Second Subunit and IsPart of a Translocation Complex in the Endoplasmic Reticulum as Probed by Bifunctional Reagents

    Get PDF
    Bifunctional cross-linking reagents were used to probe the protein environment in the ER membrane of the signal sequence receptor (SSR), a 34-kD integral membrane glycoprotein (Wiedmann, M., T. V. Kurzchalia, E. Hartmarm, and T. A. Rapoport. 1987. Nature [Lond.]. 328:830-833). The proximity of several polypeptides was demonstrated. A 22-kD glycoprotein was identified tightly bound to the 34-kD SSR even after membrane solubilization. The 34-kD polypeptide, now termed otSSR, and the 22-kD polypeptide, the #SSR, represent a heterodimer. We report on the sequence of the/3SSR, its membrane topology, and on the mechanism of its integration into the membrane. Cross-linking also produced dimers of the a-subunit of the SSR indicating that oligomers of the SSR exist in the ER membrane. Various bifunctional cross-linking reagents were used to study the relation to ER membrane proteins of nascent chains of preprolactin and/3-1actamase at different stages of their translocation through the membrane. The predominant cross-linked products obtained in high yields contained the aSSR, indicating in conjunction with previous results that it is a major membrane protein in the neighborhood of translocating nascent chains of secretory proteins. The results support the existence of a translocon, a translocation complex involving the SSR, which constitutes the specific site of protein translocation across the ER membrane

    Site-specific Photocross-linking Reveals That SecGlp and TRAM Contact Different Regions of a Membrane-inserted Signal Sequence

    Get PDF
    A chemically charged amber suppressor tRNA was used to introduce the photoactivatable amino acid (Tmd)Phe at a selected position within the signal sequence of the secretory protein preprolactin. This allowed the interactions of the NH -terminal, the central, and the COOH-terminal regions of the signal sequence to be investigated during insertion into the membrane of the endoplasmic reticulum (ER). We found that different regions of the nascent chains were photocross-linked to different ER proteins. The TRAM protein (translocating chain-associating membrane protein) contacts the NHz-terminal region of the signal sequence while the mammalian Sec6lp contacts the hydrophobic core of the signal sequence and regions COOH-terminal of this. These results suggest that the ER translocation complex is composed of heterologous protein subunits which contadcti stinct regions of nascent polypeptides during their membrane insertion

    A novel assay of antimycobacterial activity and phagocytosis by human neutrophils

    Get PDF
    SummaryDespite abundant evidence that neutrophils arrive early at sites of mycobacterial disease and phagocytose organisms, techniques to assay phagocytosis or killing of mycobacteria by these cells are lacking. Existing assays for measuring the antimycobacterial activity of human leukocytes require cell lysis which introduces new bioactive substances and may be incomplete. They are also time-consuming and carry multiple risks of inaccuracy due to serial dilution and organism clumping. Flow cytometric techniques for measuring phagocytosis of mycobacteria by human cells have failed to adequately address the effects of organism clumping, quenching agents and culture conditions on readouts.Here we present a novel in-tube bioluminescence-based assay of antimycobacterial activity by human neutrophils. The assay yields intuitive results, with improving restriction of mycobacterial bioluminescence as the ratio of cells to organisms increases. We show that lysis of human cells is not required to measure luminescence accurately.We also present a phagocytosis assay in which we have minimised the impact of mycobacterial clumping, investigated the effect of various opsonisation techniques and established the correct usage of trypan blue to identify surface-bound organisms without counting dead cells. The same multiplicity of infection and serum conditions are optimal to demonstrate both internalisation and restriction of mycobacterial growth

    Intestinal BMP-9 locally upregulates FGF19 and is down-regulated in obese patients with diabetes

    Get PDF
    believed to be mainly produced in the liver. The serum levels of BMP-9 were reported to be reduced in newly diagnosed diabetic patients and BMP-9 overexpression ameliorated steatosis in the high fat diet-induced obesity mouse model. Furthermore, injection of BMP-9 in mice enhanced expression of fibroblast growth factor (FGF)21. However, whether BMP-9 also regulates the expression of the related FGF19 is not clear. Because both FGF21 and 19 were described to protect the liver from steatosis, we have further investigated the role of BMP-9 in this context. We first analyzed BMP-9 levels in the serum of streptozotocin (STZ)-induced diabetic rats (a model of type I diabetes) and confirmed that BMP-9 serum levels decrease during diabetes. Microarray analyses of RNA samples from hepatic and intestinal tissue from BMP-9 KO- and wild-type mice (C57/Bl6 background) pointed to basal expression of BMP-9 in both organs and revealed a down-regulation of hepatic Fgf21 and intestinal Fgf19 in the KO mice. Next, we analyzed BMP-9 levels in a cohort of obese patients with or without diabetes. Serum BMP-9 levels did not correlate with diabetes, but hepatic BMP-9 mRNA expression negatively correlated with steatosis in those patients that did not yet develop diabetes. Likewise, hepatic BMP-9 expression also negatively correlated with serum LPS levels. In situ hybridization analyses confirmed intestinal BMP-9 expression. Intestinal (but not hepatic) BMP-9 mRNA levels were decreased with diabetes and positively correlated with intestinal E-Cadherin expression. In vitro studies using organoids demonstrated that BMP-9 directly induces FGF19 in gut but not hepatocyte organoids, whereas no evidence of a direct induction of hepatic FGF21 by BMP-9 was found. Consistent with the in vitro data, a correlation between intestinal BMP-9 and FGF19 mRNA expression was seen in the patients’ samples. In summary, our data confirm that BMP-9 is involved in diabetes development in humans and in the control of the FGF-axis. More importantly, our data imply that not only hepatic but also intestinal BMP-9 associates with diabetes and steatosis development and controls FGF19 expression. The data support the conclusion that increased levels of BMP-9 would most likely be beneficial under pre-steatotic conditions, making supplementation of BMP-9 an interesting new approach for future therapies aiming at prevention of the development of a metabolic syndrome and liver steatosis

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis

    Get PDF
    IL-17-producing CD8+ (Tc17) cells are enriched in active lesions of patients with multiple sclerosis (MS), suggesting a role in the pathogenesis of autoimmunity. Here we show that amelioration of MS by dimethyl fumarate (DMF), a mechanistically elusive drug, associates with suppression of Tc17 cells. DMF treatment results in reduced frequency of Tc17, contrary to Th17 cells, and in a decreased ratio of the regulators RORC-to-TBX21, along with a shift towards cytotoxic T lymphocyte gene expression signature in CD8+ T cells from MS patients. Mechanistically, DMF potentiates the PI3K-AKT-FOXO1-T-BET pathway, thereby limiting IL-17 and RORγt expression as well as STAT5-signaling in a glutathione-dependent manner. This results in chromatin remodeling at the Il17 locus. Consequently, T-BET-deficiency in mice or inhibition of PI3K-AKT, STAT5 or reactive oxygen species prevents DMF-mediated Tc17 suppression. Overall, our data disclose a DMF-AKT-T-BET driven immune modulation and suggest putative therapy targets in MS and beyond
    • …
    corecore