7,448 research outputs found

    Flexible high speed codec

    Get PDF
    The project's objective is to develop an advanced high speed coding technology that provides substantial coding gains with limited bandwidth expansion for several common modulation types. The resulting technique is applicable to several continuous and burst communication environments. Decoding provides a significant gain with hard decisions alone and can utilize soft decision information when available from the demodulator to increase the coding gain. The hard decision codec will be implemented using a single application specific integrated circuit (ASIC) chip. It will be capable of coding and decoding as well as some formatting and synchronization functions at data rates up to 300 megabits per second (Mb/s). Code rate is a function of the block length and can vary from 7/8 to 15/16. Length of coded bursts can be any multiple of 32 that is greater than or equal to 256 bits. Coding may be switched in or out on a burst by burst basis with no change in the throughput delay. Reliability information in the form of 3-bit (8-level) soft decisions, can be exploited using applique circuitry around the hard decision codec. This applique circuitry will be discrete logic in the present contract. However, ease of transition to LSI is one of the design guidelines. Discussed here is the selected coding technique. Its application to some communication systems is described. Performance with 4, 8, and 16-ary Phase Shift Keying (PSK) modulation is also presented

    An investigation for the development of an integrated optical data preprocessor

    Get PDF
    A laboratory model of a 16 channel integrated optical data preprocessor was fabricated and tested in response to a need for a device to evaluate the outputs of a set of remote sensors. It does this by accepting the outputs of these sensors, in parallel, as the components of a multidimensional vector descriptive of the data and comparing this vector to one or more reference vectors which are used to classify the data set. The comparison is performed by taking the difference between the signal and reference vectors. The preprocessor is wholly integrated upon the surface of a LiNbO3 single crystal with the exceptions of the source and the detector. He-Ne laser light is coupled in and out of the waveguide by prism couplers. The integrated optical circuit consists of a titanium infused waveguide pattern, electrode structures and grating beam splitters. The waveguide and electrode patterns, by virtue of their complexity, make the vector subtraction device the most complex integrated optical structure fabricated to date

    Deterministic ratchet from stationary light fields

    Full text link
    Ratchets are dynamic systems where particle transport is induced by zero-average forces due to the interplay between nonlinearity and asymmetry. Generally, they rely on the effect of a strong external driving. We show that stationary optical lattices can be designed to generate particle flow in one direction while requiring neither noise nor driving. Such optical fields must be arranged to yield a combination of conservative (dipole) and nonconservative (radiation pressure) forces. Under strong friction all paths converge to a discrete set of limit periodic trajectories flowing in the same direction.Comment: 6 pages, 4 figure

    The origin and evolution of the ribosome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The origin and early evolution of the active site of the ribosome can be elucidated through an analysis of the ribosomal proteins' taxonomic block structures and their RNA interactions. Comparison between the two subunits, exploiting the detailed three-dimensional structures of the bacterial and archaeal ribosomes, is especially informative.</p> <p>Results</p> <p>The analysis of the differences between these two sites can be summarized as follows: 1) There is no self-folding RNA segment that defines the decoding site of the small subunit; 2) there is one self-folding RNA segment encompassing the entire peptidyl transfer center of the large subunit; 3) the protein contacts with the decoding site are made by a set of universal alignable sequence blocks of the ribosomal proteins; 4) the majority of those peptides contacting the peptidyl transfer center are made by bacterial or archaeal-specific sequence blocks.</p> <p>Conclusion</p> <p>These clear distinctions between the two subunit active sites support an earlier origin for the large subunit's peptidyl transferase center (PTC) with the decoding site of the small subunit being a later addition to the ribosome. The main implications are that a single self-folding RNA, in conjunction with a few short stabilizing peptides, formed the precursor of the modern ribosomal large subunit in association with a membrane.</p> <p>Reviewers</p> <p>This article was reviewed by Jerzy Jurka, W. Ford Doolittle, Eugene Shaknovich, and George E. Fox (nominated by Jerzy Jurka).</p

    Feasibility investigation of integrated optics Fourier transform devices

    Get PDF
    The possibility of producing an integrated optics data processing device based upon Fourier transformations or other parallel processing techniques, and the ways in which such techniques may be used to upgrade the performance of present and projected NASA systems were investigated. Activities toward this goal include; (1) production of near-diffraction-limited geodesic lenses in glass waveguides; (2) development of grinding and polishing techniques for the production of geodesic lenses in LiNbO3 waveguides; (3) development of a characterization technique for waveguide lenses; and (4) development of a theory for corrected aspheric geodesic lenses. A holographic subtraction system was devised which should be capable of rapid on-board preprocessing of a large number of parallel data channels. The principle involved is validated in three demonstrations

    Transesterificação de óleo de soja com diversos catalisadores alcalinos.

    Get PDF
    Amostras de óleo de soja neutralizado e seco foram transesterificadas com etanol comercial a 99,5% na presença de quantidades equivalentes de hidróxido, metóxido, etóxido e gliceróxido de sódio como catalisadores. Com o uso dos três alcóxidos obteve-se a separação do glicerol formado durante a reação, o que não ocorreu com o uso de hidróxido de sódio. O rendimento de sódio, como catalisador na transesterificação, apresenta vantagens econômicas e tecnológicas quando comparado com o hidróxido de sódio.bitstream/item/65433/1/CTAA-DOCUMENTOS-12-TRANSESTERIFICACAO-DE-OLEO-DE-SOJA-COM-DIVERSOS-CATALISADORES-ALCALINOS-FL-021.pd

    Transesterificação de óleos vegetais para fins combustíveis.

    Get PDF
    Amostras de óleos de soja, algodão, colza, girassol e amendoim, depois de refinação alcalina, foram submetidos à transesterificações com metanol e etanol. Observou-se que enquanto as reações com metanol ou etanol anidro p.a. se processam facilmente com altos rendimentos e recuperação quase total do glicerol, as reações com etanol anidro comercial são mais complicadas não havendo separação do glicerol, ocorrendo grandes perdas. Foi desenvolvido, na EMBRAPA-CTAA, um processo que permite a obtenção dos ésteres etílicos, com etanol anidro comercial com conversão quase completa dos triglicerídios e separação do glicerol por adição de uma certa quantidade de glicerol.bitstream/item/118260/1/transesterificacao-de-oleos-vegetais.pd

    The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor

    Get PDF
    TFIIS-like transcript cleavage factors enhance the processivity and fidelity of archaeal and eukaryotic RNA polymerases. Sulfolobus solfataricus TFS1 functions as a bona fide cleavage factor, while the paralogous TFS4 evolved into a potent RNA polymerase inhibitor. TFS4 destabilises the TBP-TFB-RNAP pre-initiation complex and inhibits transcription initiation and elongation. All inhibitory activities are dependent on three lysine residues at the tip of the C-terminal zinc ribbon of TFS4; the inhibition likely involves an allosteric component and is mitigated by the basal transcription factor TFEα/β. A chimeric variant of yeast TFIIS and TFS4 inhibits RNAPII transcription, suggesting that the molecular basis of inhibition is conserved between archaea and eukaryotes. TFS4 expression in S. solfataricus is induced in response to infection with the S ulfolobus turreted icosahedral virus. Our results reveal a compelling functional diversification of cleavage factors in archaea, and provide novel insights into transcription inhibition in the context of the host-virus relationship
    corecore