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SUMMARY 

This report discusses the results of a program which culminated in 

the 'successful fabrication and the preliminary testing of a laboratory model 

of a l6-channel integrated-optical data preprocessor. The preprocessor was 

conceived in response to a need for a device to evaluate the outputs of a 

set of remote sensors. It does this by accepting the outputs of these 

sensors, in parallel, as the components of a multidimensional vector descrip

tive of the data, and comparing this vector to one or more reference vectors 

which are used to class~fy the data set. The comparison is performed by tak

ing the difference between the signal and reference vectors. 

The preprocessor is wholly integrated upon the surface of a LiNb03 
single crystal with the exceptions of the source. and the detector. He-Ne 

laser light is coupled in and out of the waveguide by prism couplers. The 

integrated optical circuit consists of a titanium-infused waveguide pattern, 

electrode structures and grat~ng beam-splitters. The waveguide and electrode 

patterns, by virtue of their complexitY,make the vector-subtraction device 

the most complex integrated optical structure fabricated to date. The fact 

that this device has performed successfully in its preliminary tests is in

dicative of the progress being made in integrated-optics technology. 



I. INTRODUCTION 

This report summarizes a program which resulted in the successful 

fabrication of an integrated optical circuit (IOC) which, by interferometric 

means, is capable of determining the magnitude of the difference of two 16-

dimensional vectors. The original concept for this device was generated dur

ing a NASA-sponsored program entitled "Feasibility Investigation of Inte

grated Optics Fourier Transform Devices (NASA-CR-2869, 1977) and was further 

refined during a subsequent program on "An Investigation for the Development 

of an Integrated Optical Data Preprocessor" (NASA-CR-3l5l, 1979). 

The l6-channel vector subtraction IOC is, by virute of its overall 

size, complex waveguide pattern and intricate electrode structure, the most 

complex IOC yet fabricated in any laboratory. The principle goal of, this 

program was to show that such a complex device could, indeed, be fabricated 

and within limits, operate as predicted. We have accomplished the first of 

the goals and, according to the minimal testing carried out to date, 

appear to have accomplished the second. In the process of achieving 

these goals the following have been accomplished. 

• Fabrication of a complex horn structure for disecting and sub

sequently reassembling a multimode guided wave with only 

minimal wavefront perturbation. 

• Perfection of photolithographic alignment techniques accurate 

to better than 10-4 radian. 

• Development of high quality As2S3 overlay gratings for beam 

splitters and combiners. 

• Development of a mathematical description of the operation 

of the preprocessor. 

In this report we briefly review the intended role of the processor 

and some of the preceding work in a Background Section. We then discuss the 

Principles of Operation, Design and Component Studies, and Fabrication of the 

device and finally present some preliminary Test Results. We may conclude 

from this program that it is feasible to fabricate relatively complex IOC's 

and that the present device could form the basis for an operational vector

subtraction preprocessor. 

2 



II • BACKGROUND 

ROLE OF THE PREPROCESSOR 

The various NASA missions which are dedicated to the remote sens

ing of terrestrial features are characterized by the acquisition, transmis

sion, storage and processing of enormous amounts of data. As is suggested 

in Figure II-I, a large fraction of this data is, for one reason or another 

considered useless and is therefore discarded. A major failing of present 

data handling systems is that processing this useless data accounts for a 

substantial part of the total time lag between data acquisition and delivery 

of the data to the customer in a usable form. This program deals with the 

design and construction of an integrated optical data preprocessor which is 

designed to alleviate this situation in cases where the data are in the form 

of sets of analog voltages delivered simultaneously from a number of sensors. 

In its simplest form, the function of the preprocessor is to provide a signal 

indicating whether an incoming data set is useful or useless according to 

some predetermined criteria (Fig. 11-2). A more advanced version of the pre

processor should be capable of performing a classification or identification 

function (Fig. 11-3), thereby affecting even greater economies in the trans

mission, storage and processing of the data acquired by r~mote sensors. 

The basic operation which the preprocessor is designed to perform 

is the generation of an output signal which is proportional to the sum of the 

absolute values of a function of the channel by channel difference of the 

signal and reference voltages. As will be discussed in detail below, this 

operation is accomplished by optical interferometry after first utilizing 

the .electrooptic effect to generate an optical phase analog of the N simulta

neous voltages which comprise the input data set. The simplest application 

of this operation is in the screening mode which is indicated schematically 

in Figure 11-4. As an example of its utility, consider the case of a multi

spectral scanner whose mission is to look for perturbations in the spectral 

signature of the sunlight reflected from the ocean due to oil spills, plank

ton, etc. If the preprocessor is programmed with the reference set charac

teristic of clear sea water, then it will generate a signal greater than 

some predetermined threshold value only when the incoming data indicate a 

3 
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significant departure from the clear water spectrum. All unflagged data will 

be dumped before transmission, effecting an estimated 95% reduction in data 

load. 

A more sophisticated mode of operation of the preprocessor is the 

classification or identification mode (Fig. II-5). Here, the data set to 

be identified is compared to a large number of reference sets which can be 

read into the preprocessor from some parallel storage medium, e.g., an 

N-track magnetic tape. The identification occurs when the comparison of the 

data to a particular reference set results in a null output from the prepro

cessor. Obviously this mode of operation will be useful when it is antici

pated that the incoming data will represent one of a finite number of pre

viously characterized situations. 

Previous Work 

In an earlier phase of this work, a three-channel preliminary veri

sion of the preprocessor was fabricated and tested. (1) This device, which is 

shown in Fig. II-6, was fabricated on an outdiffused LiNb03 waveguide and 

utilized a waveguide hologram to perform the required interferometric sub

traction. Its successful operation demonstrated the soundness of the opti

cal approach and the ability to integrate a number of components upon a 

single substrate to form an integrated optical circuit (IOC). On the basis 

of this success, it was decided to construct a l6-channel preprocessor which 

would have the potential for being tested with simulated and actual sets of 

multispectral data. 

8 
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III. PRINCIPLES OF OPERATION 

FEATURE IDENTIFICATION BY VECTOR SUBTRACTION 

The output of a multispectral sensor system is a set of signal 

voltages {VSi}' each voltage being proportional to the reflected light 

intensity in a given spectral band. The set {VSi} can be thought of as the 
+ 

components of a vector Vs in a multidim~nsional spectral space. If we have 

a set of reference data, {VRi }, the members of which are the components of a 
+ 

reference vector VR in the same space, then we can define the difference be-

tween the two sets as the scalar distance d between them in the N-dimensional 

spectral space. This distance has the usual definition 

(III-I) 

If dSR = 0, then it is evident that {VS} = {VR}, so an identification between 

the signal and reference sets has been established. 

In the screening or data-editor mode of operation a threshold level 

L is chosen and all data for which d~R < L is discarded. In this case, {VR} 

could represent the spectral Signature of clear water, clouds, or any other 

feature which would be indicative of uninteresting data. 

In the identification mode, there would be an entire set of refer-
+ 

ence vectors VRj ' j =l ..... M each representing the signature of a given 

feature. In this case, determination of the minimum (d~R)j would indicate 

which reference set most closely coincided with the signal set. 

THE OPTICAL APPROACH TO VECTOR SUBTRACTION 

The Mach-Zehnder Interferometer 

The way in which the operation defined in Eq. (III-l) as well as other 

potentially useful mathematical operations can be performed by a multichan-

nel interferometer can best be explained by looking first at the operation of 

the simple Mach-Zehnder interferometer with electrooptic phase shifters in 

11 



each arm as shown in Figure III-I. We will refer to Arm 1 and Arm 2 as the 

optical signal arm and the optical reference arm respectively. The light 

intensity seen at the detector is 

(III -2) 

where Sand R are the amplitudes of the two beams at the detector and sand 

r+~ are their respective relative phases. In terms of Figure 1, s is pro

portional to (VR - RS) and ~ is proportional to V~. The reason for intro

ducing the additional phase r in the optical reference arm will be made 

clear below. 

The Modified Mach-Zehnder Interferometer 

Consider now the case in which the interferometer of Figure 111-1 

is modified so that the beam in both the signal arm (arm 1) and the refer

ence arm (arm 2) are transversely divided into N equal segments each of which 

can be independentlY controlled. The intensity at the detector is now given 

by 

Ni 

I I s2 + R2 + 2S R cos (s. - r -~) 
i=l iii i ~ i (111-3) 

Two assumptions are implicit in going from Eq. 111-2 to Eq. 111-3. 

First, it is assumed that there is no cross-talk between the channels. Secon~ 

diffraction effects are ignored. The latter assumption is one of convenience 

since the computational difficulties would be enormous if diffraction were 

included. It is justified by the fact that it is possible to design the de

vice so that the beam combiner is in the near-field region in which diffrac

tion effects have not yet fully developed. This limit Z of this region is 

given by 

(111-4) 

where Z is measured f~om the end of the confinement region, W is the width 

of the apparatus and A the wavelength of light. 

12 
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FIGURE III-I. SIMPLE INTEGRATED OPTICAL MACH ZEHNDER INTERFEROMETER 
IN AN ELECTROOPTIC WAVEGUIDE. 
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In Eq. 111-3, the phase shifts s. and r. are assumed to be contraI-
l. 1. 

lable on a channel-by-channel basis whereas ~ is a uniform phase shift which 

can be applied across all of the reference channels. Each s. and r. is deter-
~ ~ 

mined by an electric field and is therefore proportional to the difference of 

two voltages. In the device as it has been considered to date, all meaning

ful operations are performed on the phases si and r i and not on the ampli

tudes Si and Ri . We will assume that a uniform plane wave is coupled into 

the device so that S. = Sand R. = R, where Rand S are constants, for all i. 
~ 1. 

It should be pointed out that an additional degree of computational freedom 

might be introduced if the values of the Si's and Ri,s could be varied indi

vidually. Since this feature is not built into the present device it will be 

ignored in this treatment. 

It can be seen from Eq. 111-3, that the complete dynamic range of 

the preprocessor can be realized only when R = S. We will, in the rest of 

this treatment take R=S=A, but before proceeding, we will show that this is 

a reasonable step and that R=S is a condition which is easily obtained experi

mentally. 

The preprocessor as described thus far is a Mach-Zehnder interfer

ometer with an internal means for controlling the wavefronts. The values of 

Sand R of interest are measured at the detector. If I is the input inten
o 

sity then 

and 

2 S = I f (I-f) 012 

(III-4a) 

(III-4b) 

where f l (f2) is the diffraction efficiency of the beam splitter (beam com

biner). Equating Sand R gives fl = f 2 . Therefore, equality of the signal 

and reference amplitudes at the detector is achieved by fabricating beam 

splitters with equal efficiencies. 

The voltage V at the detector will be proportional to I. If the 

proportionality constant is n/2A2 we can write 

N 

V = n_I_ = n L [1 + cos(e:. - ~)] 
2A2 k=l ~ 

(III-S) 

14 



Where €. = s. - r. is the phase difference in the ith channel due to the 
111 

individually induced phase shifts si and rio In the most general view of 

the device, the components of four N-dimensional vectors can be introduced, 

one on each of the four electrode sets. In this case 

(III-6) 

Here n is the mode index, r the appropriate electrooptic coefficient, t. 
1 

and d. the length and width of the electrode gaps in the signal and refer-
1 

ence arms and the subscripts a, S, y refer to the four electrical signal 

ports denoted by V , V , VA and ground in Fig. III-I. s r u 

The present treatment will be restricted to the case where r = 0, 

that is there are no phase perturbations in the optical reference wavefront. 

Eq. (III-6) may be the basis for further generalization. 

Eq. (III-5) reduces to 

N 
V = n L 

i=1 
[1 + cos(s.- b.)] 

1 

When r. = 0, 
1 

(III-7) 

If we now reinsert the explicit dependence of Si upon the applied voltages as 

indicated for the one channel device in Fig. III-I, we get 

N 
V = n L [1 - cos(RVSi - RVRi - b.)] 

i=1 
(III-8) 

where R is a proportionality constant which includes the factors displaye? in 

Eq. (111-6). 

Vector Subtraction 

Using the standard trigonometric identity for cos(x-y), Eq. 111-6 

may be rewritten as 

N 
I = n L [1 + cosR(VSi - VRi ) cos b. - sin R(VSi - VRi ) 

i=1 
sin 6] 

(111-9) 

15 



If we chose V~ such that ~ = ~ we have 

N 
I = n I [1 - cos R(VSi - VRi)] 

i=l 
(III-lO) 

If R(V
S 

- V
R

) « 1 for all i we can retain only the first two terms of the 

Taylor's series expansion and get 

I = n 
2 = const x dSR 

(III-H) 

where d
SR 

is the scalar distance defined in Eq. 1. Therefore, as long as 

the difference between the signal and reference sets is small enough to allow 

the simple approximation to the cosine function, the interferometric device 

can perform the desired vector subtraction. For larger differences between 

the two voltage sets there will still be a meaningful output, but the approxi

mation to the true vector difference will be degraded. 

Sensitivity 

In the notation of Eq. (III-7), the sensitivity of the device may 

be defined by its response to a small variation in a particular s., all other 
J 

Si = O. For vanishingly small aS
j 

we find 

I av 
sin~ = n as. 0 J s. 

J 

(III-12) 

so for small signals 

1. av = as. sin~ 
n J 

(III-13) 

Eq. (III-13) can be rewritten as a sum over all channels, so the device pro

duces an output which is the product of the magnitude of a vector difference 

and a scalar sine function. Note that this is a differential output which 

appears over the D.C. background given by Eq. (III-7) when all sk = O. 

16 



We see that the d.c. level, and therefore the photon noise at the 

detector, is minimized when ~ =~. However, this is also the minimum signal 

condition. When ~ = ~, we must rewrite Eq. (111-13) more exactly as 

1 av = as. sin(as. - ~) = -as.sinas. 
n J J J J 

2 = -(as.) 
J 

(III-l4) 

The minimum noise condition is also the minimum signal condition. The dif

ferential signal is maximized when ~ = 0, a condition which also results in 

maximum d.c. background and maximum photon noise. If the preprocessor is 

going to be operated in the straightforward vector-subtraction mode, then 

optimum value for ~ can be determined once the detector noise characteris

tics, desired response time, and minimum signal level have been specified. 

If some value of ~ other than ~ is used, then some electronic method will be 

required to reject the d.c. background. This could, for example, be accomp

·lished by simple capacitive coupling, by the use of a pulse height discrimi-

nator or, most probably, by using a differential amplifier. 

17 



IV. PREPROCESSOR DESIGN 

DESCRIPTION OF THE IOC 

The preprocessor is an integrated optical circuit designed to per

form the operation of subtraction of two l6-dimensional vectors. Its final 

design was the result of an evolutionary process which was influenced by a 

number of factors including the results of a number of intermediate efforts 

which were devoted to the fabrication and characterization of most of the 

individual components. The results of these efforts were evaluated in terms 

of the interdependent criteria of high performance and ease of fabrication. 

However, it will probably require several more iterations before the optimum 

design and fabrication techniques are achieved. 

A scale drawing of the device is shown in Figure IV-I. It consists 

of a number of optical and electrical components most of which are not shown 

clearly in the Figure because of the extremes of size and aspect ratio of the 

various components. Enlarged views of these components are presented later 

in this section. 

As shown in Figure IV-I, the light path in the IOC is defined by a 

titanium-infused waveguide. Light from a He-Ne laser is coupled into the 

waveguide by a rutile input prism which is clamped on to the broad fanout 

region of the Ti pattern. The guided beam, which is about 1 mm wide is 

bifurcated by the grating beam splitter. The two beams progress through the 

0.8 mm-wide channels to the horn structures (not resolved in Fig.IV-l) which 

first segment the beams and then couple the segmented beams into sixteen 7 um

wide channels. These channel waveguides, which are not indicated explicitly 

in the figure, curve through an angle of 20° and lead each of the segmented 

beams between 16 pairs of electrodes which are arranged so that they can im

part a phase shift proportional to (VSi - VRi ) to each of the 16 segments. The 

16 components of each beam are then reassembled by reversed horn structure and 

the two segmented plane waves are recombined at the beam combiner which is a 

surface grating identical to the beam splitter. Light· from both arms is then 

coupled out to detectors. 

18 
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In operation, the bottom arm, which is the optical reference arm, 

has its electrodes connected so that the phase shift ~ can be applied uni

formly across all 16 channels. The upper, or signal arm has electrodes 

which can be addressed independently. When all VRi = VSi for the Signal arm, 

a minimum signal is detected at the appropriate output. 

Before discussing the individual components in detail, there are 

several general features of the processor which should be pointed out. The 

design is entirely symmetric which has two significant benefits. First, the 

interferometer should function more perfectly than in an unsymmetric design 

since the optic~l paths are identical. Second, since the a and c crystallo

graphic axes of the LiNb03 are parallel to the long and short edges of the 

substrate, respectively, the device should respond symmetrically and there

fore be relatively insensitive to temperature changes. Another feature of 

the device is, that in spite of its complexity, there are only three major 

fabrication steps, the photolithographic definition and infusion of the 

titanium pattern to form the waveguide, the photolithographic definition of 

the electrodes and the holographic exposure of the grating structures. These 

steps are discussed in detail in Section V. 

PREPROCESSOR COMPONENTS 

Substrate 

The laboratory models of the preprocessor are fabricated upon a 

y-cut slab of LiNb03 with nominal dimensions of 2.5" x 1" x 0.040". The 

material used is "selected optical grade" LiNb03 purchased from Crystal 

Technology Inc. 

Coupling 

Input and output coupling is accomplished using rutile prisms. To 

simplify packaging and to reduce cost, the input prism has ·a base dimension 

of 5 mm x 3.5 mm rather than the 10 mm x 7 mm used in previous experiments. 

The output prism dimensions are 10 mm x 3.5 mm to allow it to pass both out

put beams. The prisms have been purchased from Adolf Meller Inc. 

20 



Waveguides 

The entire optical path is a titanium-infused single-mode optical 

waveguide which is used to guide the TM mode. The titanium is deposited 
o 

on the LiNb03 substrate by electron-beam evaporation and the waveguide pat-

tern is defined by photolithographic techniques. The details of the photo

lithographic mask making and pattern definition are discussed below. 

Channels 

The processor design requires that, in the data input and in the 

phase-shifter regions of the beam path, the signal and reference beams be 

confined to narrow channels. The advantages of channelizing these regions 

are (1) increased sensitivity, i.e., increased ~~/V; (2) reduced diffraction 

effects; and (3) improved uniformity of phase shifts. It is necessary to 

begin the narrow channels before the curved region of the waveguide since 

curvature losses are inversely proportional to the channel width. (2) 

The major criterion for the selection of the channel waveguide 

parameters is the minimization of optical loss in the device. Our experi

ments have indicated that the following parameters are optimal. 

Channel width 

Titanium thickness 

Infusion time 

Infusion temperature 

7 ~m 
° 750 A 

5 hrs 

1000°C 

Under these conditions we anticipated waveguide losses of <2 dB/cm for the 

straight sections with an additional 10 dB/cm for the curved sections. Since 

the loss for the 0.8 mm guides is expected to be less than the loss for the 

7 ~m channels, the overall optical loss should be less than 16 dB. The inter

channel crosstalk was expected to be less than 20 dB. 

As can be seen in Figure IV-1, the titanium infused pattern extends 

from one end of the substrate to the other and is symmetric about the long 

axis of the device. The symmetry is required by the optical considerations, 

but is also useful in that it considerably reduces the cost and difficulty of 

mask fabrication. The broad pads at either end of the device couple smoothly 
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into the 0.8 mm-wide channels. The pads accommodate both the coupling prisms 

and the grating beam splitters. 

The broad pads are joined to the horn region by 0.8 mm-wide chan- . 

nels. The horns function to segment the beam into 16 parallel channels. The 

layout of the device is such as to provide the maximum straight channel 

length in the electrode region while minimizing the overall length of the 

narrow channels. This is done to minimize the required operating voltage 

and to localize, in so far as is possible, the regions which require high re

solution lithography. 

Horn Structure 

In this section, we discuss the design of the structures (horns) 

used to separate a beam into sub-beams, constrict them to narrow channels, 

then expand them and recombine them into a single, broad, beam again. The 

design developed here is suitable for both Ti-infused and ion-milled channel 

waveguides. 

Burns, et aI, (3) have developed a design for parabolic horns that 

effect an adiabatic (i.e., radiationless) transition between two waveguides 

of different widths. The pertinent geometry, with notations used, is shown 

schematically in Fig. IV-2. The design equation is 

2aA 
o = ---- z + w 2 

o (IV-I) 

where AO is the free-space wavelength of the light used, nb is the bulk index 

of refraction for LiNb03 , and a is a constan~, a ~ 1, given by 

(IV-2) 

8p (z) is the mode propagation angle for a waveguide of width z. z is measur

ed "from the small end of the horn. Horns designed with a = 1 have been 

found by Burns et al to have low mode conversion losses, i.e., more than 90% 

of the light passed through the horn without mode conversion (to higher-order 

lateral modes in the horn region); hence, we take a = 1. 

specified, then the length of the horn is given by 
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FIGURE IV-2. GEOMETRY AND NOTATION FOR DESIGN OF 
PARABOLIC HORNS. 
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L = (W2 - W2)/(2A Inb) (IV-3) 
h max 0 0 

Clearly the horn length is dominantly determined by W • For LiNb03 max 
(nb = 2.200) and Ao = 0.633, the demoninator is 

2A 
~ = 0.575 
~ 

For high sensitivity to electrooptic phase shifts, it is desirable 

to have W very small so that the electrode spacing can be minimized. -To 
o 

maintain 10 ~m electrode spacing and to allow sufficient clearance between 

the electrodes we chose 7 ~m as a concenient channel width. 

The individual horns were designed according to the criteria dis

cussed above. Their dimensions are shown schematically in Figure IV-3. The 

horns couple smoothly into the 7-wide channels which then curve through a 20 

degree arc with an average radius of curvature of 1 cm. After passing 

through the electrode region~ the 16 individual beams are reassembled into 

a single wide beam by a second set of horn structures. 

Wavefront Perturbation 

The most important property of the waveguide structure is its 

ability to reassemble a light beam into a reasonable approximation of the 

wavefront incident upon the structure. To examine this property, the experi

mental arrangement shown in Figure IV-4 was employed to test a straight 

waveguide segment in which horn structures were used to divide a 0.8 mm-wide 

beam into sixteen 10 ~m-wide segments and then recombine these into a single 

0.8 mm-wide beam. The waveguide pattern is shown in Figure IV-5. The 1 x 

mask was fabricated at Qualitron Corp. from Rubylith masters cut at Battelle. 

The object of the measurement was to examine the phase perturba

tion introduced during the segmentation and reassembly of the 0.8 mm-wide 

beam. Both arms of the interferometer shown in Figure IV-4 contain identi

cal lenses. The reference arm contains a 0.8 mm aperture. The purpose of 

these components is to ensure that both the signal and reference wavefronts 
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exhibit the same curvature, exclusive of any perturbation introduced by the 

waveguide structure. 

Observations using the arrangement depicted in Figure IV-4 were 

made with the output coupler located on the short 0.8 mm-wide region. The 

first observation was made by adjusting the position of the lens in the 

signal arm so that the ends of the 16 individual channels were in focus. Six

teen bright spots were seen in the interference pattern which, by shifting 

the phase of the reference beam could be simultaneously extinguished. This 

provided the first indication that the phase of the input beam was preserved 

as it was segmented and guided through the channels. 

The purpose of the next experiment was to examine the process of 

optical subtraction using the wavefront as reassembled by the horn structure. 

To do this, the coupling spot was imaged rather than the ends of the horns. 

The output indicated about a 10% structure across the wavefront, most of 

which was ascribable to phase rather than amplitude effects. By shifting the 

phase of the reference beam the overall amplitude could be reduced by about 

50% with a similar reduction in the structure. The production of a better 

null was limited by the fact that the apparatus used was not capable of 

equilibrating the int.ensities of the signal and reference beams. However, 

the uniform reduction of the output intensity acrosss the full width of the 

signal beam indicated that a much better null would be achieved using a full 

symmetric interferometer. 

Beam Splitter and Beam Combiner 

The original plans called for these two elements to be fabricated 

by exposing a photoresist layer to the periodic pattern formed by the inter

section of two coherent .488 ~m-beams from an Ar-ion laser. Gratings were 

first made with a frequency of 1800 lines/mm. giving a 15 degree Bragg angle 

for the guided 6328 ~m He-Ne laser beam. To increase diffraction efficiency 

the grating frequency and the Bragg angle were reduced to 1200 lines/mm and 

10 degrees, respectively to avoid exceeding the resolution limits of the 

resist. 
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In the final design the photoresist grating was abandoned entirely 

in favor of an As2S3 grating which is exposed by the same holographic pro

cedure. The As2S3 gratings are used because we are able to obtain consis

tantly higher diffraction efficiencies with them than with the photoresist 

gratings. Diffraction efficiencies of 50% were typically obtained for 2 mm

thick As 2S3 gratings. This allowed the use of lmm-thick gratings which have 

an angular acceptance range of 0.8 mrad, twice that of the resist gratings. 

This both reduced the alignment requirement and allowed the beam combiner to 

accept more light from the output ends of the channels. The use of the ASZS3 
gratings may well have been the key to the successful operation of the pre-

processor. 

Electrode Design 

The use of channel guides in the data entry region of the processor 

allows the use of simple surface electrodes to impress electrical information 

on the light beam. The basic form and geometry of the electrodes used is 

shown in Figure IV-6. Difference information is impressed on light in the 

waveguide channel passing between the electrodes by simply applying the 

signal voltage for that channel on one electrode and the reference voltage 

for that channel on the other electrode. The dimensions used for the ~re

processor electrodes are given in Table IV-I. 

To achieve a suitable in-line design,without carrying thin lines of 

metallization over large distances,required that we adopt the unsymmetric de

sign of Figure IV-6 and that we use a conventional fan-out scheme. The 

scheme adopted is pictured in Figure IV-7, which shows a basic electrode pair 

in its entirety (no scale) and its relation to neighboring electrodes. Di

mensions for the fanout and pad regions are given in Table IV-I. 

The large disparity between pattern size and detail dimensions pre

vents a complete display of the pattern in a single figure. Figure IV-8 shows 

a section near the middle of the pattern, as generated by the very versatile 

computer code which was developed as an electrode design tool. The figure 

shows the electrodes, the leadout bundle, and several of the pads with their 

complete fanout structure. In order to generate this figure the computer 
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TABLE IV-I. ELECTRODE PARAMETERS 

Meaning 

Width of an electrode 

Space between adjacent electrode pairs 

Space between electrodes of a pair 

Length of an electrode 

Width of leadout metallization 

Space between leadout lines 

Excess leadout length past top elec
trode edge (before rotation) 

Total fanout height 

Offset between top horizontal fanout 
edge and lower pad edge 

Width of fanout lines 

Space between fanout lines 

Pad height 

Pad width 

Space between pads 

Electrode rotation angle, relative to 
padline 

Number of pad on which leadout bundle 
is centered 

Value 

15 um 

10 llm 

10 um 

7.75 rom 

100 llm 

4.1 rom 

1.0 rom 

50 um 

1.0 rom 

1.0mm 

.0.5 rom 
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program was altered to produce rectangular pads and shorter electrodes. This 

allowed reproduction at a sufficiently large magnification to permit resolu

tion of the electrode details. 

Source 

Although the long term goal of this program was to build a prepro

cessor which could function using a semiconductor laser, it was felt that it 

would be more appropriate to use a He-Ne laser for the laboratory demonstra

tion. However, except for the necessity of adjusting the grating spacing of 

the beam splitter and combiner, the device as constructed is capable of 

operating at 0.S2 ~m. 

A Coherent Radiation Model SO He-Ne laser with a nominal output of 

2 mw was used in the device characterization. 

Detectors 

The detector is chosen according to the criteria of sensitivity, 

noise figure, speed of response, convenience and availability. The overall 

optical loss of the device was estimated to be about 23 dB. Therefore, 1 mw 

incident upon the input coupling prism will result in 5 ~w at the detector. 

This is more than enough light for PIN photodiodes such as the Hewlett 

Packard SOS2-series devices. These have response speed in the nanosecond 

range, sensitivity of 0.5 ~A/~w and noise equivalent powers in the range of 

3 X 10-14 watts. 0 '11 h f b' h . d utput currents W1 t ere ore e 1n t e m1croamp range an 

the dynamic range will be SO dB, far greater than that expected from .the 

device itself. 

Packaging 

Package design has been chosen to satisfy the following goals: 

1. Provide protection for the IOC and interconnects. 
2. Provide convenient electrical connections. 
3. Provide for sturdy mounting of the coupling prisms. 
4. Permit safe and convenient transportation. 
5. Permit easy access to both input and output optics. 
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In order to minimize the cost, standard off-the-shelf components 

were chosen whenever possible. Size minimization was not considered impor

tant at this time. Several packages were considered including a dual inline 

integrated circuit package and one based on the thick film hybrid technology. 

Cost and availability led to a design that can be fabricated in-house with 

great flexibility and within a reasonable time frame. 

The design focuses around a standard single-sided printed circuit 

board. The IOC is adhesively attached to a metal substrate and located be-

tween the two connection boards (see Figure IV-9). Above that is a metal 

frame used to clamp prisms on the IOC, the whole structure being ridgidly 

supported by a thick metal slab attached beneath the circuit board. 

The main function of the printed circuit board is to provide elec

trical interconnect between the IOC and standard ribbon cable connectorrs. 

1/16" glass epoxy board with gold plated leads was chosen. An etched pattern 

with pads for wire bonding forms the interconnect. Leads in this pattern 

fan out from the two long sides of the IOC to two connectors on opposite 

sides of the board respectively. 

The IOC and circuit board were connected using 0.5 mm copper strips 

which were attached to the IOC electrical pads by an air dry silver paste. 

After the bonding is completed, the printed circuit assembly is placed on the 

metal slab and secured using the upper frame assembly. Prisms are added and 

clamped in position using fine thread-nylon screws. A box cover can be added 

for protection during shipment and during testing in the laboratory. 
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v. FABRICATION PROCEDURES 

The preprocessor is fabricated in four basic steps: 

1. Photolithographic definition an infusion of the titanium wave-

guide pattern. 

2. Photolithographic definition of the electrode pattern. 

3. Formation of the beam splitters. 

4. Electrical connection and mechanical mounting. 

In this section we will discuss those parts of the fabrication procedure 

which were particularly difficult or for which we had to develop special 

procedures. We begin with photolithographic mask fabrication, an area 

which integrated optics technology is pushing close to is current technologi

cal limits. We then discuss the entire fabrication process in the sequence 

in which it is performed. 

MASK FABRICATION 

Fabrication of the photolithographic masks for the waveguides and/or 

the associated electrodes presented a particularly challenging problem for 

the maskmaker because of the large ratio of overall dimension to minimum fea

ture dimension. The problem was solved by sectioning the master patterns, 

photoreducing each section, then reassembling the sections during the final 

photoreduction. Some of the joints were sufficiently out of tolerance to 

produce "knuckles" in the waveguides, nn aberration which has proven incon

sequential at the present state of development and which can be minimized 

with further experience with the technique. 

Because of the severe tolerance requirement on the electrode struc

ture, two masks were made for the electrode pattern, one for each set. These 

were then individually aligned using the procedure described below. 

The mask fabrication comprised the following steps: 

1) Definition of the patterns reqHired, dimensions and path 

layout; at Battelle. 

2) Construction of a computer code to generate set of coordinates 

for the pattern; at Battelle. 
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3) From this computer code, generation of a magnetic tape con

taining instructions for a (flatbed plotter driver) for cutting the pattern 

in Rubylith; at Battelle. 

4) Fabrication of the pattern in Rubylith; this was done by Com

puter Drafting Company, Haddonfield, New Jersey, on a high-precision, flat

bed plotter, using the magnetic tape supplied. 

5) Fabrication of chromium-on-glass masks from the Rubylith 

pattern; this was done by Qualitron Corporation, Danbury, Connecticut, using 

a two-step photoreduction process with sectioning and reassembling steps as 

described earlier. 

Apart from the aforementioned mismatching of sections at several 

points, the masks, and therefore the procedures for making th~have proven 

satisfactory. 

FABRICATION OF THE SIXTEEN CHANNEL WAVEGUIDE 

Photolithography and Titanium Pattern 

The titanium pattern for the 16-channel waveguide was formed by 

conventional photolithographic techniques comprising a) a metallized sub

strate, b) positive photoresist (Polychrome PCI29SF), and c) wet-chemical 

etching. Electron-beam evaporation was used to deposit titanium to a pre

determined thickness which was monitored by a quartz-crystal thickness moni

tor. Essential to this process was careful substrate cleaning in mild 

detergent, thorough water rinsing, and prebake at 300°C before metallization. 

Microscopic examination of the substrate surface was necessary to assure 

freedom from particles over the pattern area. 

Waveguide Formation 

The thickness of the titanium films and the infusion conditions 

were chosen to minimize the bending losses associated with the curved channels 

and to provide good coupling efficiency. To minimize the bonding losses re

quired maximizing the index difference between the Ti-infused channel region 

and the substrate while good prism coupling efficiency necessitated optically 
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smooth waveguide surfaces. These characteristics were achieved by partially 

infusing a thick Ti film that was subsequently polished to an optically 

smooth surface. 

Titanium films of .060 ~m to .075 ~m thickness infused for approxi

mately 12 hrs· in an oxygen rich atmosphere at 1000°C produced waveguides with 

the lowest bending losses. Total losses in the range of 15 dB to 20 dB were 

typical for these waveguides and in one case the loss was less than 10 dB. 

Titanium films down to .030 ~m thickness were also evaluated,. however those 

waveguides exhibited losses greater than 40 dB. As noted previously the Ti 

film were not completely infused. Total infusion of the thick Ti films re

sulted in waveguides with attenuation in excess of 30 dB. 

Upon removal from the furnace, the waveguides were characterized by 

a frosted surface. The rough surface texture resulted in very poor input 

coupling efficiencies and for this reason the surface required polishing to 

an optically smooth surface. Syton HT30 on Microcloth with a loading pres

sure of 20 gr/cm2 was employed for the polishing procedure. In addition to 

improving the coupling efficiency, the polishing reduced the scattering losses 

originating from the rough surface and the Ti compounds present near the 

surface. 

ELECTRODE FABRICATION 

Photolithography 

Metal electrodes were applied by techniques similar to those used 

for defining the l6-channel pattern in the titanium layer. In this case, 

approximately 0.07 urn of aluminum or chromium was vapor-deposited over the 

substrate with the infused waveguide pattern. Hot-tungsten-boat evaporation 

was used for the aluminum while chromium was evaporated from a current

carrying tungsten rod having a layer of electroplated chromium. 

Registration of the electrode mask by direct observation of the 

waveguide was simplified by a) the protrusion of the waveguides from the 

substrate surface as a consequence of indiffusion of a thick layer of ti

tanium, b) enlargement of this protrusion by the polishing operation. and 
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c) enhancement of the "ridges" by metallization. Visibility was not di

minished by the resist layer. Registration marks on the masks were needed 

only for longitudinal positioning. 

Since one electrode mask was used for each set of waveguides, two 

exposures were required for the complete electrode pattern. This was ac

complished simply by masking completely half of the slab during exposure 

over the other half, then interchanging the electrode and blanking the masks 

and repeating the process. The continuity and uniformity of the electrodes 

and associated busses appeared to be unaffected by the surface roughness 

created by titanium indiffusion and substrate polishing. 

SURFACE GRATING BEAM SPLITTERS 
fu~ BEAM COMBINER 

The surface gratings serve the function of splitting off part of 

the beam entering one arm of the device and directing it into the opposite 

arm. At the output end, the surface grating recombines the two beams. To 

function properly the gratings must be precisely aligned, must diffract at 

the correct angle and must diffract with a reasonable efficiency. 

In the original three channel device the surface gratings were . 
fabricated from a photoresist material. These gratings exhibited relatively 

low diffraction efficiencies, poor adhesion to the LiNb03 and a lack of 

reproducibility. Subsequent experiments have demonstrated that the use of 

As2S3 films as the recording medium overcomes all of these problems. Grat

ings recorded in this medium typically diffract with efficiencies greater 

than 20% and exhibit good reproducibility. 

Fabrication and Alignment 

The surface gratings were fabricated by recording a holographic 

fringe pattern in the As 2S3 films deposited on the LiNb03 waveguide and 

developing in an appropriate manner. A schematic layout of the holographic 

arrangement is shown in Figure IV-lO. Included in this set up is the optical 

system used to align the grating with respect to the 16 channels. The 
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angular alignment of the grating and the waveguide channels is a critical 

step in the fabrication procedure. The acceptance angle of the grating is 

approximately 0.8 milliradians (grating line pair spacing of 0.830 ~m and 

length of 1 mm), thus the grating and channels must be aligned to an angu

lar accuracy better than + 0.4 mr. The optical alignment system consist of 

a microscope that permits observations of the interference generated by the 

overlapping argon laser beam and the channel pattern infused into the LiNb03 • 

The eyepiece of the alignment microscope is mounted in a precision rotary 

mount and contains a cross hair reticle. In the alignment process, one of 

the reticle cross hairs is aligned with the fringe lines generated by the 

two overlapping beams. The reticle is then used as a fixed reference mark 

in which the infused Ti channels are aligned. In the next step the micro

scope is focused on the surface of the waveguide to observe the 7 ~m channels. 

By using a low power He-Ne laser, to directly illuminate the 7 ~m channels. 

they are easily observed because of interference effects. With the aid of 

reference reticle, the angle between the two arms of the 16 channel device 

is measured using the precision rotary mount to which the waveguide is attach

ed. This angle has been measured as 20 0 l' 9" + 15". The waveguide is 

then aligned so that the bisector of angle between the channels is parallel 

to the reference reticle. Note that not only must the grating be properly 

aligned, but the Bragg angle of the grating for the guided beam must not 

deviate more than + 0.4 mr from one half of the included angle between the 

two arms. This angle is controlled by adjusting the fringe spacing of the 

grating. The technique for evaluationg and measuring that angle is dis

cussed in a later section. 

After recording the grating in the As 2S3 , it is then developed by 

a chemical etching technique and its precise location is defined. The grat

ing. as recorded, occupies an area much larger than needed. To confine the 

grating to the appropriate region on the waveguide surface, a positive photo

resist film is spun over the surface of the waveguide and aligned according 

to the channel location. The sample is then exposed to a UV source and the 

exposed resist developed away. Once the resist is removed the developer, 

undiluted Polychrome D-900, etches away the As 2S3 film. The remaining resist 

As 2S3 film represents the grating beam splitter and beam combiner. The re

sist coating is removed by washing with methanol and the remaining grating 
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pattern in the As 2S3 is developed using Polychrome D900 diluted 20:1 with 

distilled H20. The exposed regions of the grating pattern in the As 2S
3 

film are preferentially etched away by the D-900 resist developer to form 

the surface grating. 

Evaluation of Grating Periodicity and Alignment 

As noted earlier, the 16 channel device would not function properly 

if the surface gratings did not diffract at the appropriate angle or were 

improperly aligned. The precise diffraction angle was determined from 

measurements of the 16 channel pattern; however, calculating the exact grat

ing spacing was difficult because the effective waveguide index was not 

known with sufficient accuracy. To compensate for that deficiency, gratings 

of the approximate spacing were fabricated on a 16 channel waveguide and the 

resulting angular error in the diffraction was measured. From this measure

ment the correct grating spacing was determined. The error in the diffrac

tion angle was measured by coupling laser beams in to and out of the wave

guide from the two opposite ends. By adjusting these beams to satisfy the 

Bragg condition for the gratings nearest their input, the angular error in 

the diffraction angle could be determined by measuring the angular differ

ence between one of the input beams and the output beam from the opposite 

end of the 16 channel pattern. This same technique was suitable for evaluat

ing the angular misalignment. 
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VI. PRELIMINARY TESTING OF THE PREPROCESSOR 

The initial test of the preprocessor were carried out with the 

goals of 1) determining that the fabrication procedures did indeed result 

in a functioning interferometer, and 2) getting a preliminary indication of 

the device sensitivity. The LiNb0
3 

slab with completed waveguides, elec

trodes, and beam splitter, was mechanically and electrically mounted in an 

arrangement similar to that shown in "Figure IV-9. One of the electrodes in 

each of the 16 electrode pairs in the optical signal arm was grounded. The 

remaining electrodes were all attached to a common voltage source. 

The first step in the test procedure was to observe the output of 

the interferometer with a low power microscope to see if an intensity change 

could be observed when a slow voltage pulse was supplied, in parallel, to 

all sixteen electrodes. In the best possible case one would expect to see a 

uniform central region in the output beam which varied uniformly in bright

ness as the voltage changed. The first few devices tested employed 2mm

thick beam splitters. For these we observed only a very small intensity 

change over a very small region of the output beam. In addition the beam 

itself was highly structured and the structure was virtually independent of 

the applied voltage. 

The situation described above improved dramatically when the thick

ness of the grating beam splitters was reduced to 1 mm. The field of view 

became somewhat more uniform and a significant area changed brightness uni

formly as the voltage of the 16 phase shifters was changed in unison. We 

speculate that this improvement was due to the increased angular acceptance 

range of the narrower gratings. This reduced the grating alignment criti

cality and allowed the grating to accept some scattered light which would 

have been otherwise rejected. This had the result of causing the straight 

through beam and the diffracted beam to be more nearly equal in intensity, a 

condition which, as discussed previously, is required for a high contrast 

ratio. The data shown below was taken by using a multimode optical fiber to 

couple light from the well behaved part of the output beam to a photomulti

plier. 
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The intial test involved applying 0 voltage pulse to all 16 chan

nels simultaneously on one arm of the device. For this test, the angle of 

the input beam was adjusted to produce maximum optical output with no voltage 

applied. During the on time of the voltage pulse, the phase shift introduced 

into the beam produces destructive interference and a reduction of optical 

output power. Using pulse amplitudes of -11 volts and a pulse width of 1 m 

sec an extinction ratio (optical output at 0 Volts/optical output of -11 

V~lts) of 19 V/0.8 V or 23.7/1 was obtained. An oscilloscope trace of the 

output obtained is shown in Figure VI-I. 

In the next test a -10 V, 100 ~ sec-long pulse was applied to only 

one channel and the optical output observed. The output for a series of 

such pulses is shown in Fig. VI-2. This optical signal was noted to have an 

amplitude of approximately 1/16 of that seen when the same pulse was applied 

to all sixteen channels. This is a good initial indication of uniformity of 

response across all the channels. With a DC bias voltage of -17 volts 

applied to the remaining 15 channels and a -10 volt pulse to the single chan

nel, the amplitude of the optical signal deisplayed on the scope was 2.5 Volts. 

A minimum detectable optical signal with a signal/noise ratio 2:1 was observed 

with a -5 V pulse and bias voltage of -17 volts. Similar results were ob

served on other channels. In all cases the phase of the detected optical 

signal could be reversed during the on time of the voltage pulse relative to 

the off period could be reversed by varying the DC bias voltage applied to 

the electrode structures. 

At this stage our knowledge of the preprocessor characteristics is 

still very crude. The device has been shown to respond to pulses as short as 

100 microseconds. The device itself should be capable of responding to pulses 

on the order of 10 nsec, but the limitations of the test electronics used for 

these initial tests prevented us from verifying this. The overall contrast 

ratio of about 24:1 for all sixteen channels indicates that the device prin

ciple is sound, although the fact that a 5 Volt signal is required to produce 

a signal-to-noise ratio of 2:1 for a single channel indicates that the 

45 



46 

FIGURE VI-I. OSCILLOSCOPE TRACE OF PREPROCESSOR OUTPUT SHOWING 
RESPONSE TO A -11 VOLT, 1 rnsec PULSE APPLIED TO 
ALL 16 CHANNELS. THE EXTINCTION RATIO IS 23.7:1. 

FIGURE VI-2. OSCILLOSCOPE TRACE OF PREPROCESSOR OUTPUT SHOWING 
RESPONSE TO A -12 VOLT, 100 ~ sec REPETITIVE PULSE. 
THE INPUT PULSE IS SHOWN IN THE LOWER TRACE. 



sensitivity is far from optimal. Improved performance is expected to result 

from a reduction in scatter in the waveguide, and perhaps by further reduc

tion in the beam combiner thickness. 
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