6,277 research outputs found

    Contact-Aided Invariant Extended Kalman Filtering for Legged Robot State Estimation

    Full text link
    This paper derives a contact-aided inertial navigation observer for a 3D bipedal robot using the theory of invariant observer design. Aided inertial navigation is fundamentally a nonlinear observer design problem; thus, current solutions are based on approximations of the system dynamics, such as an Extended Kalman Filter (EKF), which uses a system's Jacobian linearization along the current best estimate of its trajectory. On the basis of the theory of invariant observer design by Barrau and Bonnabel, and in particular, the Invariant EKF (InEKF), we show that the error dynamics of the point contact-inertial system follows a log-linear autonomous differential equation; hence, the observable state variables can be rendered convergent with a domain of attraction that is independent of the system's trajectory. Due to the log-linear form of the error dynamics, it is not necessary to perform a nonlinear observability analysis to show that when using an Inertial Measurement Unit (IMU) and contact sensors, the absolute position of the robot and a rotation about the gravity vector (yaw) are unobservable. We further augment the state of the developed InEKF with IMU biases, as the online estimation of these parameters has a crucial impact on system performance. We evaluate the convergence of the proposed system with the commonly used quaternion-based EKF observer using a Monte-Carlo simulation. In addition, our experimental evaluation using a Cassie-series bipedal robot shows that the contact-aided InEKF provides better performance in comparison with the quaternion-based EKF as a result of exploiting symmetries present in the system dynamics.Comment: Published in the proceedings of Robotics: Science and Systems 201

    Fast and Accurate Camera Covariance Computation for Large 3D Reconstruction

    Full text link
    Estimating uncertainty of camera parameters computed in Structure from Motion (SfM) is an important tool for evaluating the quality of the reconstruction and guiding the reconstruction process. Yet, the quality of the estimated parameters of large reconstructions has been rarely evaluated due to the computational challenges. We present a new algorithm which employs the sparsity of the uncertainty propagation and speeds the computation up about ten times \wrt previous approaches. Our computation is accurate and does not use any approximations. We can compute uncertainties of thousands of cameras in tens of seconds on a standard PC. We also demonstrate that our approach can be effectively used for reconstructions of any size by applying it to smaller sub-reconstructions.Comment: ECCV 201

    The Development of Attitudes Toward Scientific Models During a Participatory Modeling Process – The Impact of Participation and Social Network Structure

    Get PDF
    Scientific models are increasingly being used to support participatory natural resources management decision making processes. These models allow stakeholders and scientists to explore potential policy and management options and can help facilitate discussion surrounding concerning uncertainty and different sources of knowledge. The unique benefits of participatory modeling processes, however, are contingent upon stakeholders understanding of, engagement with, and willingness to use the scientific models as sources of knowledge and information. Little is known, however, about how stakeholders view scientific models within these processes. We examined changes in stakeholders’ attitudes toward scientific models over the course of OysterFutures, a 2-year, facilitated participatory modeling process that aimed to create consensus recommendations for oyster management in the Choptank River Complex, MD, United States. Five ordered logistic regression models were used to test hypotheses concerning the impact of social network measures, factors related to the participatory modeling process itself, and stakeholder characteristics on salience, credibility and legitimacy (SCL) attitudes toward models. Results suggested that stakeholders’ ways of knowing was a significant driver of salience, credibility and legitimacy elements of attitudes toward models. Additionally, acting as a gatekeeper within the social network resulted in significantly lower attitudes toward model credibility. These results indicate that the scientific model acted as a boundary object that facilitated discussion during the participatory modeling process. By better understanding the factors that influence model attitude formation, these processes can adjust their design and function to better take advantage of these models. Additionally, practitioners can have more realistic expectations concerning the role of models within participatory, collaborative natural resources decision-making processes

    Stories tell us? Political narrative, demes, and the transmission of knowledge through culture

    Get PDF
    This paper compares two institutions of storytelling, mainstream national narratives and self-represented digital storytelling. It considers the centenary of World War 1, especially the Gallipoli campaign (1915) and its role in forming Australian ‘national character’. Using the new approach of cultural science, it investigates storytelling as a means by which cultures make and bind groups or ‘demes’. It finds that that demic (group-made) knowledge trumps individual experience, and that self-representation (digital storytelling) tends to copy the national narrative, even when the latter is known not to be true. The paper discusses the importance of culture in the creation of knowledge, arguing that if the radical potential of digital storytelling is to be understood – and realised – then a systems (as opposed to behavioural) approach to communication is necessary. Without a new model of knowledge, it seems we are stuck with repetition of the same old story

    Development of a photobioreactor for the cultivation of the freshwater microalga Haematococcus pluvialis

    Get PDF
    Haernatococcus pluvialis is a flagellated green alga that accumulates large quantities of the carotenoid astaxanthin. Astaxanthin is commercially important as a aquaculture pigment, and as a human health supplement. Currently the majority of astaxanthin used in aquaculture is synthetic. However recent advances in algal mass culture technology and growing consumer awareness about the origins of foodstuffs mean that the use of H. pluvialis for the production of astaxanthin may become a viable alternative to synthetically produced astaxanthin. This study focused on the development of a scaleable photobioreactor and a methodology that could be used for the commercial production of H. pluvialis. Four successive air-lift driven novel tubular photobioreactors (termed TBRI, TBR2, AAPSâ„¢I and AAPSâ„¢2) were developed for the photosynthetic cultivation of H. pluvialis. Physical assessment revealed that the four systems differed in terms of their mass transfer, gas hold-up, flow rate and photostage turbulence (Reynolds number). The photo stage of each photobioreactor acted as the main area for light absorbance, (analysis of the spectral absorbance of the tubing revealed that it transmitted light of 320 - 820nm). The AAPSâ„¢I and AAPSâ„¢2 had a manifold photo stage, comprising of three windings. They also had a riser and downcomer of increased length when compared to TBRI and TBR2. This increased the bulk density difference between these stages and resulted in an increased fluid flow rate and consequently improved turbulence within the photostage. As well as being longer, the riser of the AAPSTM systems also had an increased diameter. This, combined with the improved gas hold-up of the systems, increased the mass transfer of the AAPSTM 1 and AAPSâ„¢2. The manifold assembly also allowed the construction of a larger volume photo stage while frequently returning the cells to the riser/header tank where gas exchange occurred. This prevented the detrimental build-up of photosynthetic 0â‚‚

    Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice

    Get PDF
    Arsenic (As) exposure from rice consumption has now become a global health issue. This study aimed to investigate the effects of rice rhizosphere oxic conditions on silicate transporter (responsible for arsenite transportation) expressions, and on As accumulation and speciation in four rice genotypes, including two hybrid genotypes (Xiangfengyou9, Shenyou9586) and two indica subspecies (Xiangwanxian17, Xiangwanxian12). Oxic and anoxic treatments have different effects on root length (p < 0.001) and weight (p < 0.05). Total As concentrations in roots were dramatically lower in oxic treatments (88.8–218 mg/kg), compared to anoxic treatments (147–243 mg/kg) (p < 0.001). Moreover, root and shoot arsenite concentrations in oxic treatments were lower than that in anoxic treatments in arsenite treatments. The relative abundance of silicate transporter expressions displayed a trend of down-regulation in oxic treatments compared to anoxic treatments, especially significantly different for Xiangwanxian17, Xiangwanxian12 in Lsi1 expressions (p < 0.05), Xiangfengyou9, Shenyou9586, Xiangwanxian17 in Lsi2 expressions (p < 0.05). However, there were no significant differences of transporter expressions in different As treatments and genotypes. It may be a possible reason for low As accumulation in rice growing aerobically compared to flooded condition and a potential route to reduce the health risk of As in rice
    • …
    corecore