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I 
I ABSTRACT 

I A major consideration in the design of steel framed 

I 
multistory buildings is the limitation of drift at working loads 

to an acceptable value. For buildings over about twenty stories 

I and employing unbraced steel frame construction drift will likely 

be the controlling design criterion rather than strength. 

I Traditionally, drift is controlled by increasing the size of 

I 
frame members, usually the beams. The stiffening effect arising 

from the interaction of the frames with the floor and wall or 

I cladding systems is usually ignored or crudely estimated. The 

primary purpose of this investigation is to study these interactions 

I both analytically and experimentally and to suggest simple methods 

I 
whereby structural interactions may be considered in the design. 

The study was limited to interactions between unbraced rectangular 

I steel frames, composite steel-concrete floor systems and light-gage 

corrugated or rib type vertical structural partitions. The study 

I concluded that the major interaction is between the frames and the 

I 
structural partitions. Considerable interaction between the 

frames and floor system also exists and is being studied in more 

I d il i 1 d i . . (21, 48, 49) A eta n a re ate nvest1gat1on. n exact 

analytical treatment of frame-partition interaction is presented 

I and a simplified approximate method of analysis is suggested, 

I 
together with design examples. The results of an experimental 

investigation of a large size test building are also presented 

I and correlated with the theoretical analysis. 

i 

I 
I 
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1. INTRODUCTION 

1.1 Problem Statement 

During recent years interest has developed in the actual 

structural behavior of buildings. Several studies have been con-

ducted on various types of structures. Results of completed work 

and observations made to date give every indication that calculated 

-1 

stresses, deflections and maximum carrying capacities of steel frames 

using present methods of analysis do not correspond to their actual 

values. This of course is due to the fact that buildings are not 

just two dimensional plane frames. In this regard it is appropriate 

to quote a recent statement made by Professor G. Winter of Cornell 

University. Reporting on tall buildings to the American Regional 

Conference at Chicago he said, "I myself have never seen a two

dimensional building". (46 ) Completed buildings have other elements 

such as floors, roof, exterior curtain walls and interior partitions, 

all of which stiffen the frames and combine forces with them to 

resist the applied loads. The interaction between all the elements 

present in a building should be considered if a more rational and 

economical design is to be achieved. 

Among the structures which are now widely used and which 

will probably attain even greater use in the near future are the 

modern apartment or office multistory buildings. One of the major 

problems which faces the designers of these buildings is to limit 

their drift under wind or seismic loads. Drift limitation at work-

ing wind loads is required chiefly to maintain the comfort of the 
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occupants, ensure the proper functioning of the various services 

within the building and to avoid damage to non-structural elements 

such as exterior curtain walls and interior partitions. Drift can 

be controlled efficiently and economically by provision of a suitable 

bracing system. However, due to architectural consideration this is 

not always possible and an unbraced frame design has to be adopted. 

Multistory unbraced frames of more than about twenty stories 

and designed for strength only often need to be redesigned with sub

stantial increase in steel weight (mainly in the beams) to bring build

ing drift down within reasonable limits. This additional weight in 

steel and more can be saved by taking into account the stiffening 

effect of other elements present in the building. 

1.2 Purpose of Investigation 

The main purpose of the present investigation is to study 

both theoretically and experimentally the structural interaction between 

the frames, the floor and wall systems in unbraced multistory frames 

and develop a method whereby the stiffening effects of these elements 

can be included in design. 

The flo~r system is assumed to be either solid concrete or 

concrete on metal deck both of which are made composite with the frame 

beams. The wall system refers to exterior curtain walls and interior 

partitions. For the purpose of this report these walls and partitions 

will be referred to as structural partitions to differentiate them from 
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the more rigid shear walls which are provided in some multi-story 

buildings to resist lateral loads. Although structural partitions may 

be made of any shear resisting elements which are adequately connected 

to the frames, emphasis in this report will be made on partitions made 

of light-gage steel sheeting. 

The work at Lehigh University on the frame-floor interaction 

is still underway. On completion it will be reported in detail else

where. (Zl) Apart from a brief account of the frame-floor interaction, 

this report is focused on the stiffening effect of structural partitions. 

1.3 Frame-Floor Interaction 

It is common practice nowadays to make the concrete floor 

composite with the frame beams. As a result, the bending rigidity of the 

beams in the positive moment region is usually more than doubled. Current 

composite design procedure allows for this effect only for the gravity 

loading condition. Composite beams can also affect the frame behavior 

under the combined loading condition. Under this loading condition, the 

composite beams are subjected to concentrated moments at the beam-column 

joints. Since the concrete floor surrounds the columns, 'compression is 

developed between the leeward face of each column and the adjacent con-

crete. This makes it possible to utilize the composite action in the 

positive moment regions that develop in the beams near their windward 

ends. The relative lengths of the positive moment regions depend on the 

relative values of the gravity and lateral load moments. Preliminary 

results of the work currently conducted at Lehigh University indicate 

that this type of frame-floor interaction leads to a significant reduc-

tion in building drift. In a recent paper on the analysis of composite 
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structures by Babb, the author found that the mere presence of floor 

slabs in his test building reduced the drift of the frames under lateral 

loads to only 60% of the bare frame value. (6) When the two end frames 

in the building were braced the floor slabs acting as diaphragms 

further reduced the drift of all the frames to the extent that measured 

deflections and stresses became virtually negligible. 

1.4 Frame-Wall Interaction 

II Exterior curtain walls and interior partitions are conventionally 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

used for the sole purpose of excluding the weather or subdividing the 

floor area into separate units. In multi-story buildings these par

titions can be designed to interact with the frames to carry the lateral 

loads with appreciable reduction in building drift and large savings 

in the steel members of the frames. Structural partitions can affect 

the overall behavior of the building in various ways. Their most sig

nificant effect, however, is the resistance theyoffer to building drift-

by virtue of their shear stiffness. This effect will be considered 

at length in this report. 

1.5 Requirements of Partitions 

A structural partition is, by name, a structural element 

and as such it should first of all be permanent. Figure 1 shows a floor 

plan and a typical cross frame in a steel building where structural 

partitions can drastically reduce building drift. (l) Indicated on the 

floor plan are partitions which may be considered structural as well 

as other removeable non-structural partitions. 
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A structural partition should possess adequate shear strength 

and stiffness. A partition made of light-gage steel sheets answers all 

these requirements. Plain sheets, however, are not suitable as they 

have very small out of plane bending stiffness while partitions should 

be stiff enough to resist incidental lateral loads and to facilitate 

handling during erection. Also they are likely to buckle and reach 

a state of pure tension field at very low shear loads. Having 

flexible edge members, as anticipated, such panels exhibit a highly 

nonlinear behavior associated with a drastic reduction in their shear 

stiffness. ( 9 ~ Corrugated (or ribbed) steel sheets have none of these 

drawbacks while possessing other desirable qualities, such as durability, 

low cost and light weight. Further, architectural requirements such 

as attractive surface finish, sound proofing and heat insulation can 

be easily provided in combination with these sheets at relatively 

small extra cost. 

For these reasons corrugated steel sheets are favored as a 

suitable material for structural partitions. 

1.6 Frame-Partition Connections 

Connections between partitions and frames play a very impor

tant role in their integrated behavior. There are several possible 

details for such connections. In order to decide on the most suitable 

detail the following criteria were established. 

1. The connections should be capable to transfer shear load 

from the frame to the partition and allow the sheet to be 

in pure shear; a state of stress to which it is particularly 

suited. 
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Connections should be detailed so as the partition may 

not interfere with the flexure of the bounding beams 

and columns. This is desirable first to relieve the 

rather slender sheeting from any compressive forces 

resulting from bending of the bounding members, and 

second to maintain the frame action and facilitate 

the clad frame analysis. 

3. Connection details should be as simple as possible 

if they are to become a practical proposition. 

Connection details to meet all these requirements consist 

of edge members fastened to the sheets along the four edges and then 

the whole panel is connected to the frame at the four corners. These 

connection details will be discussed further in Section 2.3. 

1.7 Previous Work 

The previous work which has bearing on the investigation 

presented in this report lies in two research areas concerning the 

structural application of light gage corrugated metal sheets and the 

behavior of shear panels made of these sheets. These will be reviewed 

separately below. 

1.7.1 Structural Applications of Light Gage Corrugated Steel 

Diaphragms 

Diaphragms made of light gage corrugated sheets have been 

widely used in building construction due to their inherent high shear 

strength and stiffness. The first conscious use of these diaphragms in 

design was to rely on them to provide lateral support to floor beams 
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and roof purlins. This type of restraining effect was studied both 

theoretically and experimentally by Errera, Pincus and Fisher. (24 ) 

However this is a local effect which does not affect the overall 

behavior of buildings. Diaphragms were next relied on to resist 

lateral loads from wind or earthquake forces and bridge these forces 

over to a plane of vertical bracing which could be a suitable bracing 

system, shear ~all or other light gage diaphragms. 

The first organized work on the shear behavior of light gage 

diaphragms and their structural applications was carried out at Cornell 

University. In 1960, Nilson introduced the simple concept of diaphragm 

action and showed how the roof sheeting can perform the function of 

i 1 b 
. (39) convent ona cross- rac1ng systems. This and other work done at 

Cornell form the basis of a manual produced by the American Iron and 

Steel Institute for the design of light gage diaphragms. (2) Nilson 

extended the application of diaphragm action to steel roof shells in 

which the surfaces are mainly in shear. These included folded plate 

. (40 41) construction and hyperbolic parabolo1ds. ' Both were tested and 

their performance was found to be satisfactory. Since then many such 

roofs have been constructed in the USA and abroad. 

In 1960 a research program to investigate the behavior of 

sheeted single story industrial buildings started at Manchester 

University. (22 ) Bryan and El-Dakhakhni presented a basic theoretical 

(10) 
treatment of clad frames which is applicable for any loading conditions. 

By separating the sway (or spread) moments from the non-sway (or non-

spread) moments the basic treatment was developed into a very simple 
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method whereby the stiffening effect of roof cladding could be easily 

allowed for and utilized in design. The theory pointed out the prime 

importance of the stiffness of the frame relative to the shear stiff-

ness of a roof panel. In fact it was shown that the stiffening effect 

of roof cladding depends solely on this relative stiffness factor. 

The developed theory was verified beyond any doubt by an extensive 

testing program which included tests in the elastic as well as the 

plastic ranges on models, a semi-full size building and field 

(11,7,12,17) Th h k tests. is researc wor culminated in the production of 

a manual for stressed skin design.(B) 

Recently the effect of roof cladding on the elastic stability 

(23) 
of portal frames was investigated by El-Dakhakhni and Daniels. 

The buckling load of frame columns was expressed in terms of two non-

dimensional factors representing the flexural restraint offered by the 

frame beam and the translational restraint offered. by the roof sheeting. 

The investigation demonstrated the appreciable effect the roof cladding 

has on the buckling strength of frames. It also presented design 

curves for the effective column length factor allowing for the roof 

effect. 

The most recent application of light-gage diaphragms is its 

use as partitions in multi-story buildings. While performing the nor-

mal function of dividing the floor plan into separate service areas, 

with proper detailing these partitions can be used economically and 

efficiently in controlling building drift under working lateral loads. 
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A great deal of work has been done on the problems of frame

shear-wall interaction. Perhaps the first attempt in this research 

area is that made by Khan and Sbaraunis. (3 l) This attempt was followed 

by others. (36 ) 

A great deal of work has also been done on the testing of 

single-story frames infilled with masonry or concrete walls and the 

analysis of multi-story frames with such infill walls. The research 

work of Malcolm Holmes and Stafford Smith is the best known in this 

(26,44,45) area. 

On the other hand, relatively few efforts have been made to 

study the interaction between multi-story frames and light gage 

partitions. Further, in the few available literature no experimental 

study has been made or even reported to have been done elsewhere. 

Among the three known investigations on clad multi-story 

frames, one only has been reported. (ZO) The information about the 

other two was obtained through direct contact with the investigators~42 , 37 ) 

The three investigations will be reviewed separately below: 

1. Work at Karlsruhe University - Germany 

At the International Conference on Tall Buildings held 

at Lehigh University in August 1972, Dubas(ZO) presented a paper on the 

interaction of structural elements with cladding. He pointed out the 

possibility of using light gage corrugated steel sheets as vertical 

diaphragms and a number of factors that need special attention such as 

fastenening details, openings, and the effect of repeated loading. 
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He described the design of a building composed of frames coupled 

with partitions and other shear resisting elements, and discussed 

the results obtained by continuous and discrete methods of analysis. 

This paper is based on unpublished investigation by Rubin. <
43

) 

2. Work at Cornell Uni.versity - USA 

The investigation at Cornell University is divided into 

two separate parts. The first part is mainly concerned with the 

analysis of clad multi-story frames for assumed partition shear 

characteristics. The second part deals with the shear stiffness of 

light gage partitions whose determination is essential to the analysis 

of clad frames. The investigation thus covers the same research area 

considered in this report. The first part of the investigation con

ducted by Miller(
3
l) is reviewed here, while the second part by 

Ammar(3) will be discussed in Sect. 2.3. 

Miller developed a linear elastic analysis computer program 

which is capable of analyzing clad multi-story frames. It requires 

over 300k reserved locations in the central memory of the computer 

and all calculations are done in double precision. The program 

utilizes a routine developed by Irons(
29

) for the efficient solution 

of large number of linear simultaneous equations. In the proposed 

elastic analysis the partitions are assumed to be connected in such 

a manner that they are able to transfer shear without being subjected 

to axial forces caused by the gravity loads on the frame beams. How

ever, the two connection details suggested by Miller, may 

allow some load transfer from the frame beam to the partitions. 
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This does not only cause the rather slender sheeting to buckle pre

maturely but would change the frame action on which the entire analysis 

is based. In order to study the behavior of clad frames Miller used 

analytical examples of three single bay single story frames made of 

light, medium and heavy member sizes in conjunction with partitions made 

of three sheet thicknesses. The chosen examples while useful in studying 

the shear behavior of partitions are not suitable to study the behavior 

of clad multi-story frames. This is because the load distribution in 

single bay, single story, clad frames depends solely on the lateral 

stiffness of the bare frame relative to the shear stiffness of the 

partition, which is not true in multi-story frames. Miller also investi-

gated the influence of cladding on the behavior of a 26 story 3 bay frame 

and presented a method to calculate the buckling load of shear panels 

made of sheets having trapezoidal profile. He concluded that they 

possess adequate buckling strength to be useful in multi-story buildings. 

3. Work at Cambridge University - England 

Concurrently with the work described in this report and 

the work at Cornell University which is reviewed above, an inves

tigation into the effect of cladding on tall buildings was conducted 

by Oppenheim at Cambridge University( 42). Oppenheim studied the prob

lem at length and suggested three design stages. He then proceeded 

with the analysis of the first stage where the partitions are called 

upon to control drift only. A sparse matrix technique was used to 

reduce the storage and computation time and an iterative method was 

chosen so that it might be used to study the response of clad frames 

to dynamic loading which the investigator also made. An approximate 
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method based on a single story stiffness and partitions with varying 

stiffness along the height of the building was suggested and its 

results were checked against those obtained from the developed exact 

method. To demonstrate the effect of cladding the investigator con

sidered four sample frames designed by Morino. ()S) These structures 

were chosen as they demonstrated the typical problem encountered in 

practice of frames possessing adequate strength but having excessive 

drift under lateral working loads. All four frames were subjected to 

static analysis and one to dynamic analysis. The results indicated 

that excessive building drift could be controlled efficiently by 

utilizing the stiffening effect of the partitions. A significant 

part of the Cambridge University investigation was devoted to the 

analysis of the shear stiffness of plane isotropicpanels. Distinction 

was made between what was termed a pure shear panel and a corner con-

nected panel. The shear stiffness of the latter was obtained from a 

finite element analysis. According to the connection details suggested 

by Oppenheim, corner-connected partitions are impracticable as they 

would need complicated connection details to distribute.the concentrated 

loads developed at the corners to the skin. Also, the stress concen-

trations at the corners would result in an appreciable reduction in 

the partition strength and stiffness. 

It should be pointed out here that this is not always the 

case with all corner-connection partitions. In fact, it will be 

shown in this report that the partition can be corner-connected while 

the skin remains in a state of pure shear. 
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1.7.2 Shear Behavior of Corrugated Shear Panels 

A considerable amount of work on shear of corrugated sheet 

panels has been done in the past twelve years. Nilson laid the founda

tion of the work by carrying out almost 40 tests on large scale dia

phragms. (39 ) He noted the warping of the corrugation profiles that 

takes place at the ends of the panels and suggested end closures to 

eliminate its effect. He also noted the effect edge and seam fasteners 

have on panel strength and stiffness. No attempt was made to develop 

any theoretical or empirical formula for the strength and stiffness of 

panels but it was concluded that they decrease as the panel span increases. 

Luttrell extended Nilson's work by carrying out tests on 

another 60 large scale diaphragms. (
3

S) He investigated the effect of 

panel configuration, material properties, span length and paid par

ticular attention to the method of fastening the diaphragm. He also 

developed a semi-empirical formula for estimating the shear stiffness 

of corrugated panels. This formula allows for only the shear defor

mation of the sheet and the effect of end warping which, according to 

the investigator, was constant for a certain panel regardless of its 

depth. Accordingly the end warping effect could be found by testing 

a relatively shallow diaphragm and using the results for similar 

diaphragms of any depth. The work of Luttrell and the earlier work 

of Nilson form the basis of the design recommendations in Ref. 2. 

Apparao carried out further tests and concluded that the 

shear stiffness of a panel was mainly dependent on its length and the 

type and spacing of fasteners, and its strength depended on the 
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.thickness of the sheet and the type and spacing of fasteners( 4). He also 

suggested an empirical relation for panel strength. 

The early work at Manchester University has shown that the 

effect of cladding can be easily allowed for inelastic as well as 

plastic design of industrial buildings provided that the diaphragm 

. . (20 10 11 7 12) 
action of a roof panel can be pred~cted ' ' ' ' . In the mean-

time it was apparent that there was no suitable general theory for 

determining diaphragm stiffness and strength. This state was expressed 

in a paper by Errera, Pincus and Fisher published in February 1967 where 

they stated, "To the writer's knowledge no suitable general theory for 

d .. d" h . "d" . "1 bl 11(24,25) eterm~n~ng ~ap ragm r~g~ ~ty ~s ava~ a e . 

The first attempt to fill that gap was made by Bryan and 

(16) 
Jackson . Although that investigation was of a preliminary nature, 

it served its purpose of pointing out the major factors influencing 

the shear behavior of panels. 

The first and so far the only general theory for predicting 

' . (13) 
diaphragm behavior was developed by Bryan and El-Dakhakhn~ • 

Analytical expressions were derived for the various factors affecting 

the stiffness of shear diaphragms. These factors included 

the deformation of purlin-rafter connections, slip at sheet-purlin 

fasteners and sheet-sheet or seam fasteners, shear deformation of 

the sheet, axial deformation of the edge members, and bending and 

twisting of the corrugation profiles. The effect of intermittent 

fastening of the corrugation and the stiffening effect of intermediate 
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members were also included. The theory derived was verified by exten-

( 14 15) sive testing on component parts as well as large scale panels. ' 

Nearly 150 tests are reported in Ref. 14 alone. In all these tests 

it was noticed that the strength of the fasteners controlled the 

strength of the panels. In the tests on lighter panels reported in 

Ref. 15 failure occurred due to instability of the edge member. 

Further theoretical investigation was conducted at Manchester 

(27) 
University by Horne and Raslan. Energy and finite difference 

approaches were considered and the effect of curving of the corrugation 

generators was included. 

Very recently Libove and associates carried out a theoretical 

study with the purpose of determining the shear stiffness, the defor-

mations and the stresses in panels made of trapezoidally corrugated 

plates with discontinuous attachment at the ends. (33 , 34 , 28 ) The 

theory employs the principle of minimum potential energy and as done 

by Horne and Ras lan it .takes· into account the effect of curving of the 

corrugation generators. A comprehensive bibliography of relevant 

work carried out mainly in connection with aircraft structures is 

presented in a paper by Libove entitled, "Survey of Recent Work of 

the Analysis of Discretely Attached Corrugated Shear Webs". (32 ) 

With the exception of the work done by Libove and his 

associates,which was developed in connection with aircraft structures, 

all the investigations reviewed above were conducted in relation to 

roof or deck diaphragms. 
Q 
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1.8 Plan of Treatment 

I In addition to Chapter 1, wh:ich presents an introduction to the 
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investigation, this report contains five more chapters. Chapter 2 in-

eludes the theoretical analysis. Chapter 3 describes a large scale 

test building. Experiments carried out on the test building in the 

elastic range are presented in Chapter 4. Maximum strength experiments 

are presented in Chapter 5. Chapter 6 is devoted to the general con-

elusions and recommendations. 

Chapter 2 is subdivided into three sections. Section 2.1 

includes a basic theoretical treatment of clad multi-story frames. The 

method suggested is based on computing the flexibility coefficients 

of the bare frame and is applicable regardless of the mater:al used 

for the partitions. The stiffening effect of composite floors can be 

readily included by replacing the influence coefficients of the bare 

frame by those of the frame having composite beams. Section 2.1 also 

includes an approximate method for estimating a clad frame drift 

associated with a given partition. The validity of this method is 

checked against the results obtained from the exact analysis of the 

design example presented in Sect. 2.3. The approximate method is 

found to give a good estimate of the shear flexibility of partitions 

that would be required to reduce frame drift to a prespecified smaller 

value. In Sect. 2.2 the shear flexibility of corner connected par-

titions is discussed. It is divided into a number of components 

representing the contributions of the various factors involved. Fol

lowing similar procedure to that adopted previously by Bryan and 

El-Dakhakhni and using energy methods, separate expressions are 

derived for individual components and the final result is obtained 
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by adding up the relevant values. The method is attractively simple. 

Only short hand calculations are necessary to determine the shear 

flexibility of a partition. Also, by separating the various effects 

the method has the additional advantage of pointing out the relative 

importance of the various factors and thus helping the designer to make 

easy and quick adjustments to the partition flexibility according to 

his needs. A design example of a clad frame is presented in Sect. 2.3. 

The frame has two bays and fifteen stories. Although it is ,realized 

that the drift of this frame under working loads is not excessive 

and lies within the acceptable limits yet it is introduced to demon-

strate the effect of partitions of different flexibilities and to 

check the validity of the approximate method. 

The basic theoretical treatment and the design example 

presented in Chapter 2 should provide ample understanding of the 

elastic behavior of clad multi-story frames. 

Chapters 3, 4 and 5 include the experimental investigation. 

Chapter 3 presents some aspects of planning, design, loading arrange-

ment and instrumentation of a large size test building constructed 

in the laboratory to study the various structural interactions in 

multi-story buildings. As planned and designed this test building 

provides the capability of studying the integrated behavior of multi-

story buildings under gravity, lateral and combined loading conditions. 

However, due to unforeseen reasons tests were conducted for the lateral 

loading condition only. Included in Chapter 4 are a description and 

a discussion of tests carried out on the test building in the elastic 
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range. These consist of tests on the bare frames, frames with com

posite floors, and frames with composite floors and structural par

titions. Throughout the experimental work emphasis was placed on the 

effect of partitions. Two partitions made of corrugated steel sheeting 

and with aspect ratio of about 1 and 2 were tested. Each partition 

was tested with different fastening details between the sheeting and 

the edge members. The results of those tests are discussed in the 

light of ~he theory presented in Chapter 2 and good agreement is shown 

to exist between calculated and observed values. 

Near the end of the research program an opportunity arose 

to conduct failure tests. To the investigato~s knowledge this is the 

first time that a large size test building with partitions made of 

light gage sheeting has been loaded to its maximum capacity. The 

results of these tests are reported in Chapter 5, 

General conclusions and recommendations are presented in 

Chapter 6. 
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2. THEORETICAL ANALYSIS 

2. 1 General 

At the outset, it was felt that the best way to treat the prac

tical problem of the integrated behavior of multi-story buildinge is 

to follow an engj_neering approach. To ehgineers simplicity of the 

method is highly desirable because the value of even the most sophis

ticated method decreases sharply if it requires long computation time 

or exceptionally large computers. Flex:i:bil:i.ty of the method is also 

desirable in that it should allow adjustments, which are inevitable 

in design, to be made at minimum additional effort and cost. After 

all it goes without saying that if a problem can be solved in more 

ways than one, it pays to use the quickest and simp}est so long as 

the accuracy of the solution is not sacrificed. 

The method suggested here for the analysis of clad frames 

has the characteristic of being both simple and adjustable. It is 

based on breaking up the original problem into two smaller problems. 

The first concerns the behavior of the bare frame alon~ while the second 

deals with the shear flexibility of structural partitions. 

In the first problem it is only necessary to compute the 

flexibility coefficients of the bare frame. This is done within a 

relatively short time compared to that .for, the- analysis of the 

frame under working loads. This is because in general the analysis 

of a frame having m joints calls for the solution of a set of 3m 

linear simultaneous equations of the form: 
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[F} [K] [ D} (1) 

where [F} 3mxl is the load vector, [Kl 3mx
3

m is the structure stiffness 

matrix and [n}
3

mxl is the joint displacement vector. A solution for 

the displacements is obtained by inversion of the stiffness matrix K. 

Thus, 

(D} (2) 

Equation 2 can be generalized to include any number of 

I 

loading conditions and will then assume the following form: 

(3) 

where [Fl in this case is a 3mxn matrix; n being the number of loading 

conditions which in our case will be equal to the number of stories. 

Among all the operations involved, inversion of the stiff-

ness matrix K is the lengthiest and most expensive. 
-1 

Once K is 

generated, the flexibility coefficients are obtained by the fast 

operation of post multiplying it by individual columns of F where 

all the elements in each column but one are zero. 

It is realized that matrix inversion is not the most efficient 

method for solving the large number of equations involved but a method 

will be suggested in subsection 2. 2. 3 to reduce the number of unknowns. 

In the second problem, the same philosophy of tackling a 

complex problem by breaking it into a number of smaller problems was 

again adopted. The shear flexibil.ity of a partition is subdivided 

into a number of components representing the contributions of the various 
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factors involved. Separate expressions are derived for these components 

and only short hand calculations are necessary to find their values. 

The final result is then obtained by adding up the values of the rele-

vant components. By separating the various effects, the method has 

the advantage of pointing out the relative importance of each factor, 

and helping the designer to make easy and quick adjustments to the 

partition flexibility according to his needs. 

2.2 Stiffening Effect of Structural Partitions 

2.2.1 Basic Analytical Treatment 

Consider the two-bay multi-story frame shown in Fig. 2 and 

assume it has partitions in the right bay only. Under a set of lateral 

loads Hi the frame will drift through a set of horizontal displacements 

bi at various floor levels. A set of restraining forces H~ will be 

developed by the partitions as they are forced through some shear 

displacements preventing further drift. 

For the frame and using the common notation for the flexibility 

coefficients 6 .. the actual displacements at various floor levels will 
l.J 

be given by: 

= H 6 + H 6 +---- -+ H 6 -(HI 6 + HI 6 +-----+HI 6 ) ( 4) 63 1 31 3 32 n 3n 1 31 2 32 n 3n 

bn=H6 +H6 +-----+H6 -(H
1
6 +H 1 6 2+-----+H'6) 

1 nl 2 n2 n nn 1 nl 2 n n nn 
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given by: 
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For the partitions and denoting the shear flexibility of a 

c the actual displacements at various floor levels will be 

6l = C [n H' + (n-1) H' + (n-2) H' + ---------+ H'] 1 2 3 n 

62 = C [(n-1) H' + (n-1) H' + (n-2) H' + ---- + H'] 1 2 3 n 

6
3 

= C [(n-2) H' + (n-2) H' + (n-2) H' + ---- + H' l 
1 2 3 n· (5) 

n 
6 = C I: H' 

n 1 

By equating the frame deflections in Eqs. 4 to "the deflections 

of the partitions in Eqs. 5 the following set of compatibility equations 

is obtained 

H{[o 21 :-(n-l)C] + H~[o 22+(n-l)CJ + H;[o 23+(n-2)Cl +---+H~[o 2n+ Cl = 62b 

H{[o 31+(n-2)C] + H2[o32+(n-2)C] + H;[o 33+(n-2)C] +--+H~[o3n+ c]= 63b 

----------- + H'[o + cl= 6 n nn · nb 

The right hand sides of Eqs. 6, 6lb' 62b,---6nb are the 

drift at various floor levels of the bare frame due to the applied 

lateral loads H1 , H2 ,---Hn and are given by: 

In matrix shorthand, Eqs. 6 may be expressed as: 

(6) 

A H1 = B (8) 
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where A is a square symmetrical matrix which can be calculated by a 

simple routine using the flexibility coefficients, the number of stories 

n and the shear flexibility of a partition C. 

B is a column vector representing the displacements of various 

floor levels due to the applied loads and may be obtained from Eq. 7. 

By solving Eq. 8 the restraining forces H' are obtained. 

The actual frame drift is obtained by back substitution in Eqs. 4. 

The shear forces on the partitions can be obtained from Eqs. 5. 

Assuming that the flexibility coefficients are generated by 

any of the many programs available for linear elastic analysis and 

stored in matrix D(N,N) where in FORTRAN, N refers to the number of 

stories, the program segment to generate the A matrix and B vector 

in Eq. 8, and produce the restraining forces, the net forces on the 

frame, HNET, the shearing forces in the partitions, SF, and the actual 

displacements, DACT is as follows: 

C CALCULATION OF MATRIX A 
DO 3 J = l,N 
IF (I.GT.J) GO TO 4 
A(I,J) = D(I,J) + C* (N + 1 - J) 
GO TO 3 

4 A(I,J) = D(I,J) + C* (N + 1 - J) 
3 CONTINUE 
C CALCULATION OF VECTOR B 

DO 5 I = 1, N 

6 

5 
c 

SUM= 0.0 
DO 6 J = 1, N 
SUM = SUM+ D(I,J) 
B(I) = H*SUM 
CONTINUE 
SOLVE FOR THE RESTRAINING FORCES AND STORE THEM IN B 
CALL SOLVE (A,B,N.L, DET) 
CALL OUTE (B,N,L,9HRESTRAINT, 7H FORCES) 
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CALCULATE NET FORCES ON FRAME AND S.F. IN PARTITIONS 
WRITE (6, 7) 
FORMAT ( lH, * NET FORCES ON FRAME S. F. IN WALL *) 
Q = 0.0 

, DO 8 I = l,N 
HNET (I) = H - B(I) 
Q = Q + B (I) 
SF(I) = Q 
WRITE (6,9) HNET(I), SF(I) 
FORMAT (3X, El4.7,8X,El4.7) 
CALCULATION OF ACTUAL DISPLACEMENTS 
WRITE (6,13) 
FORMAT (lH, 20HACTUAL DISPLACEMENTS) 
DO 10 I = l,N 
DACT = 0.0 
DO 11 J = l,N 
DACT = DACT + HNET (J)*D(I,J) 
WRITE (6,12) DACT 
FORMAT (lH ,El4.7) 
STOP 

SOLVE and OUTE are two subroutines from FLMXPK matrix package used 

(30) 
to solve the equations and output of the results. 

2.2.2 Approximate Method for Estimating Drift of Clad Frames 

For design purposes,it is important to have a simple method 

to estimate even approximately the drift of a clad frame associated 

with a specific shear flexibility of partitions or, more to the point, 

to estimate the shear flexibility of a partition that would be required 

to reduce frame drift by a certain amount. The approximate method is 

derived from the basic analytical treatment given in subsection 2.2.1 

by making the following simplifying assumptions. 

1. The frame beams have infinite flexural stiffness. The 

bare frame will then drift in a racking mode and its 

resistance to lateral loads will depend on the stiffness 

of the columns only. 
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2. The frame columns have uniform sections along the height 

of the building. 

It is not suggested that either of these assumptions is valid 

in practice but it is possible to select column sizes which, with 

these assumptions, will result in a drift comparable to the;<t of the 

bare frame. Also, these assumptions are introduced to point out the 

prime importance of the stiffness of the bare frame relative to the 

stiffness of the partitions on the behavior of clad frames. 

The shear flexibility C of the columns in a story is given 
c 

by: 

c 
c .I 

c 
(9) 

where L = story height, I = moment of inertia of the column section 
c 

about the axis of bending; the summation being carried out for all the 

columns in a story and E = modulus of elasticity. 

Denoting the actual relative displacement between two consec~ 

tive floor levels, i and i + 1, by 6i,i+l' then 

i t H!) for the bare frame 6. '+1 = c (~ H, 
~.~ c 1 

~ 1 ~ 
(10) 

and for the partition 6i,i+l = c t H~ 
1 ~ 

(11) 

Equating Eqs. 10 and 11, 

i c i 
H' c 

~ = ~ Hi 
1 1 c + c 

1 c 
(12) 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
-I 
I 
I 
I 
I 
I 

From Eqs. 10 and 12 

= 
i 

c L: 
c 1 

c 
c + c 

c 
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(13) 

Since similar partitions are used in all stories, C is 

constant. Also, according to assumption 2,C is constant. Thus, 
c 

c c 
c 

c + c 
c 

i 
L: 
1 

(14) 

The corresponding relative displacement in the bare frame 

is given by: 

{',i, i+l c 
c 

i 
L: 
1 

H. 
~ 

(15) 

From Eqs. 14 and 15 and dropping similar displacement 

subscripts, the actual displacement {', may be expressed in terms of 
act 

the bare frame displacement {', as follows: 
bare 

where r 

{', 
act = 1 

r + 1 

relative flexibility factor given by: 

c 
c 

c r = 

(16) 

(17) 

Equation 16 shows that 1/(r+l) represents a reduction factor 

to frame drift at any level. Equation 17 shows that this reduction 

factor depends solely on the relative partition-bare frame stiffness 

and that only when the partitions are very flexible relative to the 

frame will r - 0 and hence {', = ~ act oare · 
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The question that arises now is the column sizes in which 

story should be used in Eq. 9 to evaluate C . Since assumption 1 
c 

underestimates frame drift it will be reasonable to compensate this 

effect to use columns sizes nearer to the top of the frame. Of course 

a truly representative column size can not be decided upon until a 

sufficient number· of multi-story frames is analysed and the resulting 

drift is compared to that calculated on the assumptions of rigid beams 

and uniform columns. 

2. 2. 3 S.implifying Numerical Technique 

Provided the flexibility coefficients are known, the time 

and cost for computing the restraining forces, net forces on the frame, 

the shearing forces on the partitions and the actual drift of the clad 

frame is relatively small. For instance, in the example 

presented in this report it took less than one second with execution 

cost of less than $1.0 to produce all these values for the 15 story 

frame. The problem then lies in the computation of the flexibility 

coefficients and it is there that savingsin the computation time need 

to be made. 

In Eq. 3 we are interested in frame drift at various floor 

levels rather than the horizontal displacements of individual joints 

at each level. Since the axial deformations of the frame beams are 

usually very small and for all practical purposes can be neglected, it 

will be reasonable to assume the beams have infinite axial rigidity. 

While still allowing all the joints to displace vertically and rotate, 

this results in reducing the number of unknown horizontal displacements 
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to one per story and hence the total number of unknowns from 3m to 

(2m+ n). For instance in a 30-story 3-bay frame the number of unknown 

displacements will be reduced from 360 to 270. Clough, King and Wilson 

presented a method of analysis based on this assumption and suggested 

two methods for solving the resulting equations. (l8) Tne first is an 

iterative scheme and the second is a recursive technique based on the 

tridiagonal nature of the stiffness matrix. Of the two the latter 

is more convenient to apply in conjunction with the method of analysis 

presented in this report. 

The only new factor that appears in the preceeding sectlon 

and needs further consideration is the shear flexi.b-!..lity of the partition 

C. Analytical expressions for this factor will h,~ derived in Sect. 2.3. 

2.3 Light Gage Structural Partitions 

As explained earlier ln the introduction, corrugated steel 

sheets are particularly suit3ble for structural partitions. The most 

important property of a partition is its shear f lexlbility. This 

property ls governed by practical factors such as the met:hod of 

fastening th2 sheets to the edge members or fastening individual 

sheet widths together, as well as theoretical consideration of the 

deformations of the component elements of the partition. 

Considerable work has already been done on the behavior of 

(2- 4,13-15,27,28,32-35 39) 
corrugated shear panels. ' However, with one excep-

tion, no work has been developed in relation with structural partitions. 

The exception made refers to the work currently underway at Cornell 
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University to predict analytically the shear flexibility of light 

. i (3) gage part~t ons. In that investigation a finite element approach 

is used together with complementary tests to determine a number of 

panel characteristics such as the stiffness of the fasteners, the shear 

stiffness of the corrugated sheet and the elastic modulus of the sheet 

in the weak direction. In deriving the partition stiffness, a rather 

fine mesh is required if a reasonable degree of accuracy is to be 

obtained. As reported, this would often cost more than the analysis 

of the frame. (3?) The investigators at Cornell University are to be 

complimented for taking the challenge to solve the complex problem of 

the shear flexibility of partitions. However for such a problem influ-

enced more by practical considerations of fastener details and less by 

theoretical considerations of deformations the long and costly computa-

tions are not.entirely justified. This is particularly true when the 

solytion will be used in conjunction with a multistory frame analysis 

where the size of the problem is already big and attempts are being 

made to cut it down. 

Most of the previous work was developed in relation to roof 

and deck panels. The main differences betwen panels used for decks or 

roofs and those used for partitions are: 

1. The shear flexibility of a roof or deck panel was 

defined as the displacement per unit shear load applied 

parallel to the corrugation generators. In the case of 

partitions the bay width is usually greater than the story 

height, and since higher out-of-plane stiffness is 

desirable it will be advantageous to install the panels 
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with the corrugation generators running vertically 

across the shorter span. Accordingly, the shear 

flexibility of a partition is defined here as the displace

ment per unit shear load applied normal to the corrugation 

generators. 

2. Roof or deck panels can be fastened to the supporting 

purlins or floor beams on one face only. This leads to 

a discontinuity in the shear flow along the edges which 

results in bending and twisting of the corrugation pro

files. These deformations in turn, have a profound 

effect on the panel stiffness. In the case of partitions 

the sheets can be fastened to the edge members on both 

faces of the corrugations. Bending and twisting can then 

be completely eliminated. Even if it is decided to 

fasten the sheets on one face. only, the shear flexibility 

component due to bending has to be modified on account 

of the new measure of shear flexibility used for partitions. 

The investigation of this flexibility component is very 

important because partitions welded on both faces may 

prove so stiff that they may attract a share of the applied 

load in excess of their carrying capacity. In such 

cases, additional flexibility can be injected into the 

partitions by welding it on one face only allowing the 

free bending of corrugation profiles. 

3. The shear flexibility of a roof or deck pane) was derived 

assuming two corner connections. Connecting the partitions 
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at the four corners, as proposed here, leads to a new force distribu

tion in the edge members which in turn affects the shear flexibility 

component due to axial deformation of the edge members. Other flexi

bility components are also affected as will be shown subsequently. 

2.3.1 Shear Flexibitity of Corner-Connected Partitions 

Figure 3 shows a typical structural partition. It consists 

of light gage corrugated sheets attached to edge members on the four 

sides. The sheets are installed with the corrugation generators 

vertical. The four edge members are assumed to be pin-connected to 

each other such that they have zero resistance to any applied shear. 

Individual sheet widths are fastened together along the seams and the 

whole sheet is fastened to the edge members along the perimeter. The 

assembled partition is connected to the steel frame only at the four 

corners. Under an applied shear load Q this partition will be sub

jected to the corner forces indicated in Fig. 4a. 

As done before in regard to roof panels( 13 ~ various shear 

flexibility components of a structural partition are found separately 

and the total flexiblity is obtained by combining the relevant com

ponents. The main components are due to shear deformation of the 

sheet, axial deformation of the edge members, bending of the corruga

tion profile and local deformations (crimping) at the edge fasteners 

and seam fasteners. Thus, 

c = c
1 

+ c2 + c
3 

+ c
4 

+ c
5 

(18) 

The flexibility component c1 - c
5 

are derived subsequently. 
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2.3.2 Flexibility due to Sheet Deformation, c
1 

Consider again the partition shown in Fig. 4a. Due to the 

loads applied at the corners and provided the sheet is continuously 

fastened to the four edge members it will be subjected to a uniform 

shear flow of Q/b around the edges as indicated in Fig. 4b. Assuming 

that the edge members have infinite axial rigidity and that the sheet 

is attached to them such that relative movement between both is pre-

vented and that no bending of the corrugation profiles takes place 

then the shear displacement 6 will be only due to the shear deforma-

tion in the sheet. 

u = 
2 

.9._ 
2G (19) 

where u shear strain energy per unit volume, G =the shear modulus 

and q shear stress which for a sheet thickness t is given by: 

q =_g_ 
bt 

The total strain energy U is thus given by: 

2 
U = tc; (a x a b x t) 

where a = partition width, b = partition length and a(a factor 

(20) 

(21) 

depending on the corrugation profile) = ratio of the developed length 

of a corrugation to its projected length. 

From Eqs. 20 and 21 

u = a a Q2 

2 G bt 
(22) 

Equating the total strain energy in Eq. 22 to the external 

work done 1/2 Q6 leads to: 
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(23 

Substituting for G in terms of the modulus of elasticity 

E and Poissons ratio v, Eq. 20 may be expressed as: 

C =2aa(l+v) 
1 E b t 

(24) 

2.3.3 Flexibility Due to Axial Deformation of Edge Members c
2 

Assuming the sheet has infinite shear rigidity and that it is 

fastened to the edge members such that any relative movement between 

both is prevented and no bending of the corrugation profiles takes 

place, the shear displacement 6 will be due only to the axial defor-

mation of the edge members. 

Considering the equilibrium of one of the horizontal edge 

members it will be seen that the member is subjected to a uniform 

force per unit length equal in magnitude and opposite in direction to 

the shear flow in the sheet Q/b in addition to two end forces each of 

Q/2 acting as indicated in Fig. 4b. The axial force in the member 

thus varies linearly from a maximum value of Q/2 at the ends to zero 

at the middle. Referring again to Fig. L~b,the axial force at a 

distance x from the middle is _±Q x/b. Thus, 

2 
Q2b 

u = 2 Ib/2 1 <9f) dx 2EA
1 

X 
24 EA

1 0 

(25) 

The strain energy of a vertical edge member can be found 

in a similar manner by noticing that the axial force in the member 

varies linearly from a maximum value of Qa/2b at the ends to zero at 

the middle. 
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u = 
a/2 

2 s 1 
2 

X (~) dy (26) 
0 

where A1 and A2 = cross sectional areas of a horizontal and a vertical 

edge member.respectively •. 

Equating the strain energy of the two pairs of edge members 

to the external work done, 1/2 Q 6 leads to: 

=~ 1 b a3 

c2 = CA + AJ;"Z) Q 6E 1 2 
(27) 

If A1 
= A2 = A, 

c2 = 
(b3 + a3) 
6 EA bz (28) 

2.3.4 Flexibility Due to Bending of Corrugation Profile, c 3 

As mentioned before when the sheet is fastened tot he edge 

members on one face only, bending and twisting of the corrugations 

occur. Assuming that the sheet has infinite shear rigidity and the 

edge members infinite axial rigidity and that the sheet is fastened to 

the edge members in such a manner as to eliminate any relative move-

ment between both but not interfere with bending and torsion of the 

corrugation profile then the shear displacement will be due to the 

latter two effects only. As the effect of torsion is negligible com-

pared to that of bending, partition flexibility due to bending only 

will be considered. 

Figure 5 shows two identical shear panels with the corruga-

tion generators vertical. Both panels are loaded similarly by the 

indicated set of shearing forces in equilibrium. If the vertical edge 
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member a d is held in position the panel will deflect vertically 

on amount /:, as shown in Fig. Sa. If on the other hand the horizontal 
v 

edge member a b is held in position the panel will deflect horizontally 

an amount ~ as shown in Fig. Sb. Since in both cases the shear dis

tortion y is the same the two displacements may be related. Thus, 

!::.v /:,h 
y = b a 

(29) 

a 
/:,h = - /:,v b (30) 

Under a shear load Q applied parallel to the corrugation generators, 

/:,v resulting from bending of the corrugation profile has been found 

in Ref. 13. 

= n 
c 

X 

where h = height of corrugation, £ 

Q (31) 

width of crest of corrugation, 

n = number of corrugations in panel and K = factor depending on 
c 

the geometry of the corrugation profile and how the sheet is attached 

to the edge member. This factor will be discussed further later. 

Qb/a. Due 

From Eqs. 30 and 31 

Equation 32 

n x 
c 

gives 

to a horizontal 

/:,h n X 
c 

144 K h3 l 
E t

3 
a

2 
b 

Q (32) 

~due to a horizontal shearing force 

shearing force Q, /:,h will thus be given 

144 K h3 t
2 

Q X 
a 

(33) 
E t 3 a 2 b b 

by: 
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Substituting for n by its value, n 
c c 

b d' where d pitch 

of corrugations, Eq. 33 reduces to: 

to Fig. 6. 

144 K h
3 i 

3 
E t a b d 

Q (34) 

(35) 

The factor K appearing in Eq. 35 is defined with reference 

K = EI 6 

T (36) 

where EI = bending rigidity of the sheet per unit length along the 

corrugation generator, 6 =crest deflection due to unit horizontal load. 

If the sheet is welded to the edge member at the center of 

the valley as shown in Fig. 6a, then it can be easily shown that K 

is given by: 

K = (d + 2h) (i- 3£d ·l- 3i) 

12 hi 
(37) 

If the sheet is continuously welded along the lower face 

or just welded at the toes of the corrugations as shown in Fig. 6b, 

K will be given by: 

K 
(U + 3h) 
12(£ + 6h) 

(38) 

It will be appropriate to mention h:are that an excellent 

review of welding details of light gage steel diaphragms has been 

presented by A. Nilson in Ref. 39. A more recent study may be found in 

Ref. 19. 
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2.3.5 Flexibility Due to Crimping at Sheet-Edge Members Fasteners,c
4 

In general the sheet will be fastened to the edge members 

by spot welds at points spaced along the perimeter. Shear transfer 

between the sheet and the edge members at these points results in 

local deformation of the light gage material. These local deformations 

around the fasteners, usually referred to as crimping, contribute to 

the partition flexibility. In order to evaluate this effect consider 

the same partition as before and let it be assumed that both the sheet 

and edge members have infinite rigidities, then under the applied 

shear load Q the displacement ~will be due to sheet crimping only. 

Let the fasteners along the horizontal edge members be 

spaced at pb and those along the vertical edge members at pa, and let 

the relative movement due to sheet crimping at each fastener be s 

per unit load. 

Similarly, 

Force per fastener along horizontal member 
Q 
b pb (39) 

Movement at fastener 
Q pb 

s (-b-) (40) 

Work done at all fasteners along horizontal members 

2 
s Q pb 
2 (-b-) 

Work done at all fasteners along vertical members 

s p a Q2 
a = 

(41) 

(42) 
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Equating the work done at all fasteners to the external work done 

leads to: 

c4 
/);_ 2s 

(pb b + p a a) = = 
b2 Q 

(43) 

If p = pb p, 
a 

2 s p 
(a + b) c4 = 

b2 
(44) 

2.3.6 Flexibility Due to Crimping at Seam Fasteners , c
5 

In deriving all the previous flexibility components it was 

assumed that the sheet was made up of one piece. In practice, al-

though sheets are produced in lengths that exceed the requirement for 

normal story height they are available only in standard widths which 

vary from 2 ft. to 3 ft. If the partition is to behave,as assumed, 

as a shear panel individual sheets have to be fastened together along 

the seams. Crimping at the seam fasteners result in additional 

flexibility of the partition. In order to evaluate the effect con-

sider the same panel as before and assume all its components have 

infinite rigidities then under the applied shear load Q the displace-

ment 6 will be only due to crimping at the seam fasteners. 

Let the fasteners along each seam joint be spaced at p' and 

the relative movement due to sheet crimping at each fastener be s' 

per unit load. 

Force per fastener = 

Work done at one fastener 

9. 
b 

p' 

= s'cQ ')2 2 b p 

(45) 

(46) 
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Work done at all seam fasteners 

where b = average sheet width. 
0 

= 

s 
2 

1 
2 

(~ 
2 

p') X b 

q2a s'p' 
b b 

0 
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a b - I X 
p b 

0 

(47) 

Equating the work done at all fasteners in Eq. 47 to the external work 

done leads to: 

a p's' 
b b 

0 

(48) 

Factors sand s' appearing in Eqs. 44 and 48 respectively 

depend mainly on the sheet thickness and the size of the weld. They 

will have to be determined experimentally but this creates no real 

difficulty since all that is needed is a simple pull out test. An 

empirical formula based on similar tests carried out on self tapping 

screws is presented in Ref. 13. Further tests on welded connections 

may be found in Ref. 19. 

2.4 Design Example 

I A two-bay fifteen-story frame was analysed taking the 

I 
stiffening effect of structural partitions into account. The frame 

was designed according to 1969AISC. allowable stress provisions. The 

I overall dimensions and member sizes are shown in Fig. 7. The frame 

was spaced at 30 ft. Thus, with wind intensity of 20 psf the equiva-

I lent wind loads will be 7.2 kip per joint as indicated. Three shear 

I 
flexibility values for the partitions were used. These correspond 

to the properties quoted in the description of each partition type. 

I 
I 
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2.4.1 Description of Partition Type 1 

The partition is assumed to be installed in one bay only. 

For a depth of the column section of 14 in. the panel length is: 

b = 30 x 12 - 14 = 346 in 

For an average frame beam depth of 30 in. the panel width is: 

a 12 X 12 - 30 114 in. 

The sheet used is of 18 gage (thickness t = 0.0478 in.) and has a 

corrugation profile 3 in. wide and 1.5 in. deep. The edge member is 

a channel 2 in. deep and 0.25 in. thick so that the 1.5 in. deep sheet 

profile can fit within its flanges. The cross sectional area of the 

2 
edge member A 0.875 in. The sheet is assumed to be continuously 

welded to the edge members so that sheet crimping at the connections 

to the edge members is negligible, s = 0. Average width of individual 

sheets b
0 

= 34 in. and the sheets are welded together at 6 in. intervals 

with assumed crimping factors' = 0.008 in./kip. 

2.4.2 Description of Partition Type 2 

This partition is similar to partition 1 in every respect 

except that it is welded to the edge member on one face only. Since 

in this case there is no need for a channel edge member, an angle 

12 x 2 x 1/4 having a cross sectional area A 0.938 in~ is used. 

The sheet is welded to the angle at the center of the corrugations 

and hence p = 6 in. The crimping factor, s, between the sheet and the 

thicker material of the edge member is assumed 0.08 in./kip. 
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In addition to the foregoing data, the K factor required for 

the determination of the flexibility component due to bending of the 

corrugation profile calculated from Eq. 37 is given by 

K 

2.4.3 Description of Partition Type 3 

This partition is identical to partition 2 except in the weld-

ing detail of the sheets to the edge members. Instead of welding the 

sheets at the center of the corrugations they are w~lded at the toes of 

the corrugations. Thus, the welding pitch p = 3 in. and the K factor 

required for determining c
3 

is calculated from Eq. 38. 

K 
(U, + 3h) 
12(1, + 6h) 

2 X 3 + 3 X 1.5 
12(3 + 6 X 1.5) 

= 0.073 

2.4.4 Calculation of Shear Flexibility of Partitions 

The shear flexibility of partitions 1, 2 and 3 described 

above, have been calculated from the basic expressions derived in 

Sect. 2. 3. and are fully worked out in Table 1. 

2.4.5 Analysis of Clad Frame 

I An elastic analysis of the bare frame was carried out to 

I 
I 
I 
I 
I 

obtain the flexibility coefficients. Having thus generated matrix 

D (15,15) the program segment presented in subsection 2.2.1 was used 

to compute the restraining forces, net forces on the frame, shear 

forces on the partitions and the actual drift of the frame associated 

with the three shear flexibilities of the partition calculated in 

Table 1. A sample output for C = 5.76 x.l0- 3 in/kip is given in 
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I 
Table 2. The results of the analysis are presented diagrammatically 

in Figs. 8-10. Each of Figs. 8, 9 and 10 shows the total applied 

I shear at various floor levels and the share of this shear taken by 

the partitions. Each diagram also shows the maximum shearing force 

I in the partition. These diagrams correspond to partition flexibility 

-3 -3 -3 C equal to 7.91 x 10 in,/kip, 5.76 x 10 in./kip and 3.67 x 10 

I in./kip respectively. They illustrate how relatively more flexible 

I partitions attract less load. The maximum shear loads carried by the 

three partitions are 35.8 kip, 43.1 and 54.6 kip respectively. Figure 

I 11 shows the deflected shape of the frame corresponding to the four cases. 

I 
Curve A represents the bare frame behavior. As indicated the drift 

index at the roof level = 5.87/(15 x 12 x 12) = 0.0027. Curves B, C 

I and D represent the behavior of the clad frame associated with values 

of C = 7.91 x lo-3 , 5.76 x lo-3 and 3.76 x 10-3 . The corresponding 

I drift indexes are 0.0014, O.OOll and 0.0009, which are one half, 

I 
0.42 and one third of the bare frame drift index. 

It will be recalled that the first two drift indexes are 

I associated with partitions where the sheeting is welded to the edge 

I members on one face only. Consideration of expenses of sheet welding 

details and the resulting reduction in drift may make the designer 

I be satisfied with welding the sheets on one face only provided the 

strength of the partition is not governed by the strength of the welded 

I connections. Further, by welding the sheeting on both faces a partition 

I 
can become so stiff that it may attract a share of the applied load 

in excess of its carrying capacity. In such a case resorting to the 

I 
I 
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simpler welding details may provide the answer to the problem. 

2.4.6 Check of Approximate Method 

The approximate method proposed in subsection 2.2.2 will 

now be examined in the light of the results obtained for the design 

example discussed in Sect. 2.4. 

The shear flexibility of columns, C , has been calculated 
c 

from Eq. 9 and is listed below for the stories in the upper half of 

the frame. 

Story No. C (in./kip) 
c 

15, 14 9.65 X 10-3 

13, 12 3.95 X 10-3 

11, 10 2.54 X 10-3 

9, 8 1.86 X 10-3 

In the analysis of the design example, a value of C = 7.91 x 

10-3 in./kip resulted in reducing frame drift exactly to one half. 

According to Eqs. 16 and 17 this can only happen if the flexibility of 

the columns, C , is the same as that of the partition. Scanning the 
c 

above table would indicate that the shear flexibility of columns 

closest to this value lies between stories number 13 and 14 which are 

at about one fifth the frame height from the top. The average 

column flexibility of these two stories is 6.8 x lo-3 in./kip. Con-

sidering this value and according to Eqs. 16 and 17 the flexibility 

of the partition that would be required to reduce the drift to one 

third will be 0.5 (6.8 x 10-3 ) = 3.4 x 10-3 in./kip. This value cor-

responds to a value of 3.67 x 10-3 in./kip obtained in the design 
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example. Also, the flexibility of the partition to reduce the drift 

3 -3 
to 0.42 of the bare frame value will be 0.73 (6.8 x 10- ) = 5.0 x 10 

in./kip. This corresponds to a value of 5.76 x 10- 3 
in./kip obtained 

in the example. 

It follows that .for the example by considering the flexibility 

of the columns at about one fifth the height of the frame ~rom the top, 

Eq. 16 gives a good estimate of partition flexibility that would be 

required to reduce the drift of the frame to any-prespecified fraction 

of the bare frame value. 

2.5 Strength of Structural Partitions 

So far emphasis has been ·placed on the stiffness 0 ~ structural 

partitions with little reference to their strength. Consideration 

of the shear strength of a partition has to go hand in hand with con-

sideration of its stiffness. This is because it is easy to choose 

a partition which would reduce the frame drift to within a prescribed 

limit and forget that due to its excessive stiffness it might not be 

capable of sustaining the share of load it attracts. 

On examining the strength of a partition all the possible 

modes of failure must be considered. The design load should then cor-

respond to the least calculated strength reduced by a reasonable load 

factor. 

Failure of the partition can take place as a result of one 

or more of several reasons. These include tearing of the sheet at 

the edge member fasteners, breaking of the seam fasteners, yield of 

the sheet material and instability of the edge members. The latter 
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is a more probable cause of failure especially for the horizontal 

edge members which are anticipated to span bay widths on the order of 

30 ft. In considering the stability of such edge members it should be 

remembered that the strut has a length equal to half the total length 

of the edge member and that it is subjected to a uniformly varying 

axial load as explained earlier in subsection 2.3.3. 

Another strength criterion which needs to be investigated is 

the shear buckling of the sheeting. Thi$ has been suggested as a 

design criterion by the investigators at Cornell University. (3?) 

Corrugated shear panels, however, possess appreciable post buckling 

strength. Buckling of the most heavily loaded partitions near the bottom 

of the building will only cause a reduction in the stiffness of those 

partitions with insignificant effect on the overall behavior of the clad 

frames. 

2.6 Strength of Clad Frames 

In addition to the stiffening effect of the partitions, they 

add to the load carrying capacity of the frames. In allowable stress de

sign the additional capacity corresponds to the share of the applied loads 

taken by the partitions. In maximum strength design the additional capacity 

results from two sources, the share of the applied loads taken by the 

partitions and at high loads, the larger capacity of the frame itself due 

to smaller P~ effects. 
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3. TEST SETUP AND PROCEDURE 

3.1 Introduction 

The value of any theoretical study is greatly increased if it 

is correlated with experimental results. Further, the store of know

ledge about actual behavior of structures is so meagre that any 

reliable tests on a large scale building will by itself, be of value 

and interest to engineers. 

A large scale test building was constructed for the purpose 

of studying and isolating the various structural interactions which 

occur in a typical multi-story building. The building consists of 

unbraced steel frames, concrete floors and partitions made of light 

gage corrugated steel sheets. In this chapter, the building and the 

experime.ntal capabilities it possesses will be discussed in detail. 

Also some aspects of planning, design, loading arrangement, fabrication, 

erection and instrumentation of the building will be given. 

Description of the tests carried out on the test building in 

the elastic range, and discussion of the results in the light of the 

theory presented in Chapter 2 will be presented in Chapter 4. 

Maximum load capacity tests conducted on individual clad 

frames are reported in Chapter 5. 

3.2 Planning of Test Building 

At a very early stage in planning of the test building there 

were many basic questions to be answered. For example a decision was 
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required to establish how many stories, bays and frames the test building 

should have. Also, the overall dimensions had to be decided upon. To 

expedite these and many other similar decisions the following criteria 

were established: 

1. No attempt need be made to exactly model the test building 

after an actual building with respect to dimensions and 

loads. Instead, it should be representative of a por

tion of a typical high-rise office or apartment building 

employing unbraced multi~story steel frames, composite 

steel-concrete floor systems and some permanent interior 

partitions. Further, it should be designed in accordance 

with current specifications and building codes where 

applicable as a building in its own right. 

2. The test building should be large enough to employ 

standard and rolled steel beam and column sections in 

the frames. 

3. The concrete floor should be designed so that it can 

easily be made either composite or non-composite with the 

frame beams. 

4. The structural partitions should be constructed of 

5. 

available materials and provided with simple connections 

to the frame members so that they may be installed or 

removed at will. 

The dimensions of the test building should be such that 

it will fit within the flexure test bed area in the 
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I 
laboratory and not interfere with the operation of the 

overhead traveling crane. 

I 6. The load required to test the building to its maximum 

capacity should not exceed the capacity of the available 

I laboratory test facilities. Also, the loading condition 

I 
should be pertinent to the problems involved in the design 

of high-rise buildings. 

I 7. The test building should be designed and instrumented so 

that under load, the effects of the various components 

I on the strength and.stiffness of the building can be 

evaluated separately or in combination. 

I 
3.3 Description of Test Building 

I In order to fully understand the reasons for some of the 

I 
details provided in the building and appreciate the experimental cap-

abilities it provides it will be necessary to list the specific factors 

I to be investigated. These are: 

1. The effect of composite steel beam-concrete floor. 

I 2. The effect of composite beam-column connections. 

I 
3. · The effect of structural partitions 

The three main structural elements of the building are 

I described below: 

I 
3.3.1 Steel Framing 

The test building consists of three parallel unbraced steel 

I frames spaced 5'-4" apart. Each frame has two unequal bays of 10'-0" 

and 5'-0" and two equal stories with story height of 5'-0". A 

I 
I 
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dimensioned sketch of the steel framing is shown in Fig. 12. A 

photograph of the building with the concrete floors is shown if Fig. 

13. The frames are supported on pin bases at mid story height. This 

is in accordance with the assumption that the test building represents 

a portion within the height of a high-rise building where points of 

inflection usually occur very close to the mid points of the columns. 

The three frames are braced together for out of plane stability. Each 

frame is made of six subassemblages. Three typical subassemblages 

forming one story are shown in Fig. 14. The joints between the sub

assemblages allow either pinned or rigid connections. In addition to 

simplifying erection and allowing the replacement of damaged parts of 

the frames, this arrangement enables variations in lateral frame 

stiffness to be made. The steel framing is fabricated of ASTM A-36 

rolled steel sections. The columns are W6xl2 and the beams are SSxlO 

sections. MC3x7.1 sections are used for the floor beams. All the 

steel used for fabricating the frames was obtained from the same heat 

in order to reduce changes in cross-sectional and material properties. 

3.3.2 Concrete Floor Slabs 

Each floor slab was made up of nine pre-cast reinforced 

concrete panels. The six panels in the 10 ft. bay were each 5 ft. 

3 1/2 in. ( perpendicular to the frames) by 5 ft. 2 3/4 in. (parallel 

to the frames.) Similarly the three panels in the 5 ft. bay were 5 ft. 

3 1/2 in. by 4 ft. 11 1/2 in. Each panel was 1.5 in. thick, with a 

1 1/2 in. x 3/8 in. steel bar cast into the slab around the perimeter. 

Figure 15 shows a photograph of a panel before casting the concrete. 
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Shown on the centerline of the panel are 1.5 in. internal diameter pipe 

I sleeves spaced at about 6 in. apart. These sleeves were provided to 

accomodate grouting of 1.2 in. shear connectors welded to the flanges of 

I the frame beams. Reinforcement consisted of one layer of 4 in. x 4 in. 

I 
wire mesh with 0.25 in.¢ wire. Figure 16 shows a close-up view of a 

number of the shear connectors after erection. The shear connection was 

I developed between the steel beam and the concrete floor by grouting inside 

the pipe sleeves with a fine concrete mix and using heavy square washers 

I and nuts to secure the slabs. After grouting the floor panels could not be 
~ 

I 
removed and the subsequent tests on the walls were carried out with the floor 

composite along the full length of the beams. Floor panels were provided 

I with recesses with adequate clearance to accommodate the frame cloumns. Re-

movable steel wedges were provided to engage the column faces with the con-

I crete floor slabs. Figure 17 shows the wedge assembly and the manner in which 

the concrete floor slab could be made to bear against the column faces. 

I 
3.3.3 Structural Partitions 

I Partitions were fabricated of 24-gage (0.025 in. thick) ribbed 

steel sheets with a square profile 3 in. wide (in the plane of the partition) 

I and 1.5 in. deep. Individual sheet widths were spot welded along the seams 

I at about 4 in. spacing. The sheet was attached along its perimeter to light 

edge members made of 1.5 in. deep fabricated channel having 0.5 in legs and 

I a cross-sectional area of 0.28 sq. in. The two sides running parallel to the 

I 
corrugation generators were continuously welded to the vertical edge members. 

The two other sides were welded to the horizontal edge members; once along 

I one face and then on both faces of the corrugations. Two partitions were 

provided for the 5-ft. and 10-ft. bays of each frame. Individual par-

I titions were connected to the frame at the top corners and at intervals 

I 
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along the lower side. A corner connection was made up of two 

0.25 in~ thick plates, one welded to the partition and the other 

to the frame and both drilled to take a 0.5 in. bolt. Figure 18 shows 

a photograph of a typical corner connection. Use was made of the floor 

shear connectors to connect the lower side of the partition to the 

frame. The lower edge member was drilled and a nut was tightened on 

the threaded end of every other connector. Figure 19 shows one of 

these connectors. The figure also shows the recess in concrete slab 

provided to clear the column face. Figure 20 shows a photograph of 

a partition installed in the 5-ft bay. An overall view of the test 

building with partitions installed in the 10-ft. bays is shown in Fig. 

21. 

3.4 Design of Test Building 

3.4.1 Steel Framing 

The behavior of a typical multi-story frame under gravity 

and lateral loads may be described by the behavior of three main 

regions along its height. (S) 

1. An upper region comprising about the top five to eight 

stories. In this region the design is controlled by 

the gravity loading condition. Second order P~ effects 

are insignificant, 

2. A transition region comprising a few stories immediately 

below the upper region in which the design is controlled 

by either the gravity or the combined gravity and lateral 

loading condition. The P~ effect may or may not be 

significant. 
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I 3. A region comprising the middle and lower stories in which 

the design is controlled by the combined gravity and 

I lateral load condition. The Pb. effects in this region are 

significant and should be considered in designs based 

I on maximum strength. 

I It can be concluded, therefore, that it is not necessary to 

' •', 

I 
design a high-rise test building in order to investigate the integrated 

behavior of such buildings. The steel framing for the test building, 

I although of a limited number of stories can be designed so that the be-

havior of similar stories anywhere in a taller building can be simulated 

I simply by controlling the magnitudes of the column axial loads and shears 

I 
at the boundaries. 

3.4.2 Concrete Floor Slab 

I The concrete floor slab was designed primarily to fulfill 

the following requirements: 

I 1. Maintain a realistic flexural stiffness relative to that 

I of the frame beams and to provide a practical reinforce-

ment ratio. 

I 2. Enable the interactions between the frame and floor 

systems to be easily isolated and evaluated.' 

I 3. Support any gravity loads which may be applied during 

I 
the testing. 

4. Ease of handling during erection and testing. 

I 
I 
I 
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3.4.3 Structural Partitions 

So far as is known this is the first time that a test building 

with structural partitions made of light gage metal sheeting has been 

investigated. Consequently~ there is no previous experience on which 

to base the design of the partitions and the connections between them 

and the bounding beams and columns. Therefore in designing the par

titions, the following criteria were established: 

1. A structural partition is, by definition, a structural 

element and as such should be adequately and permanently 

connected to the frames. 

2. In order that a partition may behave primarily as a shear 

panel, it should be connected along its four sides. At 

the same time the connections should be detailed to 

clear the partition completely from the frame members, or 

at least provide some degree of_ in-plane flexibility 

in order to relieve the rather slender sheeting from 

undesirable in-plane compression resulting from bending 

of the frame members. 

3.5 Loading Arrangement 

The tests described in this report were carried out under 

lateral loads only. Nevertheless provisions had been made for 

applying gravity and lateral loads. Description of the two loading 

systems will be given. • 
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The vertical loads were to be applied to the column tops 

by means of gravity load simulators connected to a system of loading 

beams as shown in the elevation view in Fig. 22. Each gravity load 

simulator has a maximum load capacity of 80 kips. (4?) The load 

simulators were disposed in plan as shown in Fig. 23. This arrangement 

would have allowed the application of equal column loads up to a 

level of about 0.6 P , or column axial loads with varying gradients 
y 

across the building. 

The horizo~tal loads were applied to the frames by means 

of two screw jacks each of maximum load capacity of 40 kips. During 

the tests the three frames were loaded simultaneously through a rigid 

beam bolted to them at level 4, Figure 26. Two calibrated tension 

rods were inserted between the jacks and the loading beam for load 

measuring. The jacks operated against a longitudinal beam spanning 

between the laboratory columns. Figure 24 shows a photograph looking 

down on the loading apparatus. Also shown between the test building 

and the platform supporting the jacks are the three columns which 

held the dial gages. 

The loading apparatus was planned and designed to fulfill 

the following requirements: 

l. Maintain the relative position of the columns. 

2. Distribute the applied vertical and horizontal loads 

equally to the three frames of the building. 

3. Apply uniform column axial loads,~ up to a level of 

about 0.6 P • It was this requirement together with 
y 
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I 
the limitations imposed by the available loading capacity 

that decided the size of the column section adopted. 

I In an actual building, the axial load level in a column 

varies along its height, being of the order of 0.5 -

I 0.6 P in the upper region and decreasing to 0.3 - 0.4 P 
y y 

I 
in the lower region. Thus, under the gravity loading 

condition alone, the column axial loads could be adjusted 

I so that the test building might represent any desired 

portion of a high-rise building. 

I 4. Apply column axial loads with varying uniform gradients. 

I 
Similar gradients across the building occur in actual 

buildings as a result of the overturning moments pro-

I duced by the lateral loads. The gradient can be ex-

pected to increase towards the bottom of the building 

I where the overturning moment has a relatively large 

I 
influence. 

5. Application of horizontal shear to the top of the test 

I building to simulate the shear produced by lateral loads 

in a high-rise building. 

I Thus by adjusting the gradient of the column axial loads 

I across the building and the magnitude of the horizontal shear, the test 

building could be made to represent any portion of a building under 

I combined gravity and lateral loads. 

I 
I 
I 
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3.6 Fabrication 

The frames were fabricated of ASTM-A36 rolled steel sections; 

W6xl2 for the columns and SSxlO for the beams. The required lengths of 

the sections used were ordered from one heat to avoid possible change 

in the cross sectional and material properties. The joints of the sub

assemblages, from which the frames were constructed, were welded by 

1/4" all round fillet welds. The joints between adjacent subassem

blages were bolted and all holes were drilled for 1/2" ¢ ASTM-A490 

high strength bolts. 

In order to minimize the sizes of the beams for the vertical 

loading apparatus, they were fabricated of ASTM-ASO high strength 

steel sections. The frames and the beams for the vertical loading 

apparatus were fabricated by an outside fabricator chosen on the basis 

of the lowest bid.. The beams for the horizontal loading apparatus,. 

the concrete floor panels and other items such as the bracing, frame 

pin bases, pedestals and the steel framing for the platform were 

fabricated in the laboratory shop. The partitions were fabricated by 

an outside firm which specializes in the fabrication of light-

gage structural elements. Subassemblages enough to construct three 

frames, each of three stories, and floor panels for three floors were 

fabricated. 

3.7 Erection 

After the floor bases and the longitudinal anchor beams 

were layed and secured to the test bed, the pedestals were welded in 

their proper positions. Figure 25 shows a photograph of the test bed 
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at an early stage of erecting the test building. The hinge bases of 

the frames were bolted to the pedestals after providing the necessary 

shims to make sure that they were all on the same level. On these 

bases, individual frames were erected with the bolts of the joints 

left loose. Vertical bracing between the frames and also braces in 

the floor planes were installed. Next, a set of measurements was 

taken at various levels to check the overall dimensions of the· building 

and a transit was used to check the verticality of the columns. The 

necessary adjustments having been made, a new set of measurements was 

taken. The process was repeated until all the dimensions were correct 

and the columns vertical within the fabrication tolerance of 1/16" 

and then all the bolts of the joints were tightened. 

After alignment of the test building, the vertical loading 

beams were installed and with minor adjustment they fitted in their 

proper places. Having thus established the level of the. tops of the 

columns, the horizontal loading beams were installed in their proper 

places at the proper level. 

Strain gages were next mounted on the frames at their pre

specified locations, labelled and hooked to the switch boxes provided 

to handle the large number of gages used. Finally, the frames were 

whitewashed with hydrated lime. Flaking of the whitewash during testing 

would indicate progression of yield if and where it occurred. 

When the frame-floor tests started, the floor panels were 

placed in their proper places and temporarily secured to the frame 
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beams while the positions of the shear connectors were marked by 

center punch through the sleeves cast in the floor panels. With the 

floor panels removed, the shear connectors were welded in their thus 

determined positions. Next the floor panels were replaced and shear 

connection along any length of the beams was obtained by tightening 

down nuts on the threaded ends of the connectors projecting through 

the sleeves. 

When the tests on the building with partitions started, 

the self-contained shear panels were installed in the manner described 

in subsection 3.3.3. 

3.8 Instrumentation 

The instrumentation was designed to obtain strains from 

which a complete picture of the axial force and bending moment distri

butions could be drawn. The instrumentation was also designed to deter

mine the magnitudes of the associated applied loads as well as their 

distribution among the frames. Electric resistance strain gages were 

used for measuring strains from which the stress resulta'nts in all 

the members of the three frames were computed. Twenty strain gage 

stations on each frame were used. These were disposed along the 

beams and columns as shown in Fig. 26a. Each column strain gage 

station had four gages arranged on the flanges as shown in Fig. 26b. 

On the other hand each of the beam gage stations had six gages arranged 

as shown in Fig. 26c. The additional pair of gages attached to the web 

was provided to ensure accurate strain readings when the beams were 

made composite with the floors and the neutral axis was expected to 
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move too close to the upper flange to make the gages attached there 

reliable. The upper pair of gages was attached to the underside of 

the top flange to avoid possible damage from the concrete slabs. 

Since the tests described in this report were carried out under 

lateral loads which resulted in very small axial strains, only bending 

moment distributions in the frames will be reported. A total of 96 

strain gages per frame were used. This number alone almost exhausted 

the capacity of the available strain recording unit. Since during 

testing the strains induced in the three frames were to be recorded 

simultaneously, a special switch box assembly was constructed and all 

the strains were recorded automatically on punched tape by me2ns 

of the available 100-channel strain recording unit. The punched tape 

was next converted onto computer cards which were used with other section 

and material properties as data to a specially developed computer pro

gram for data reduction. 

The horizontal loads applied by the screw jacks were measured 

by means of two calibrated tension dynamometers inserted between the 

jacks and the loading beam. 

In addition to strains, displacements were also recorded. 

Deflections of individual frames were measured at floor levels and 

mid-story heights by means of l-in. travel dial gages. These gages 

were supported by three independent columns constructed for this pur

pose on the south side of the building. Figure 26a also shows the 

position of the dial gages along the height of the building. The 
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results of deflection measurements at mid column height and at the 

loading beam level will not be quoted in this report as they do not 

contribute any new information. Only deflection readings at dial gage 

stations 1, 2 and 3 will be given. The dial gage reading at station A 

was used as the reference reading. The reading at station C was used to 

monitor the deflections applied to the frames by the screw jacks which 

were located at the level of station C. 
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4. TEST RESULTS - ELASTIC RANGE 

4.1 Testing Procedure 

In general the same procedure was followed in each of the 

tests. The initial dial gage and strain gage readings were recorded. 

Equal displacements were applied to the three frames. The applied 

displacements were indicated by dial gages placed at the upper floor 

level and when a suitable displacement had been reached the applied 

jack loads were noted and the corresponding deflection and strain 

values recorded. Successive displacement increments were then applied 

with the displacements and strains recorded each time. The maximum 

applied displacement was chosen to ensure that the frames were not 

loaded beyond the elastic range while the magnitude of the displacement 

increment in each test was chosen so as to provide a sufficient number 

of points on the load-deflection and load-strain curves. When the 

deflections and strain values had been recorded at the maximum applied. 

displacement, the load was reduced to zero and the deflections were 

noted. It was observed in each test that the frames returned to their 

original unloaded position indicating that the building was behaving 

linearly and that the frames were not loaded beyond the elastic range. 

Each test was carried out twice to ensure the consistancy of the results. 

4.2 Test Program 

Three series of tests were carried out. The tests are numbered 

as follows: 
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1. Tests on the bare frames. 

2. Tests on the frames with concrete floors. 

(a) Floor made composite in the positive moment region 

under gravity loads. 

(b) Same as in (a) but with the concrete floor in contact 

with the leeward faces of the columns. 

(c) Floor made composite along the full length of beams. 

(d) Same as in (c) but with the concrete floor in contact 

with the leewar.d faces of the columns. 

3. Tests on the frames with composite floor and partitions. 

In this series a number of tests were carried out on the 

frames with and without the concrete floors in contact with 

the cloumn faces. Since no significant differences were 

observed the term composite floor will then mean that the 

frame beams are made composite along their full length and are 

in contact with the column faces. 

(a) Partitions in the 5 ft-bay with the sheet welded to 

the edge members on one face of the corrugations 

only. 

(b) Same as in (a) but with the sheet welded to the edge 

members on both faces of the corrugations. 

(c) Partitions in the 10-ft. bay with the sheet welded 

to the edge members on one face of the corrugation only. 

(d) Same as in (c) but with the sheet welded to the edge 

members on both faces of the corrugations. 

(e) Partitions in both the 5-ft. and 10-ft. bays with the 

sheet welded to the edge members on both faces of the 

corrugations. 
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4.3 Control Tests 

Control tests were done to determine the cross-sectional and 

material properties of the S5xl0 and W6xl2 steel sections used for the 

frame beams and columns of the test building. 

4.3.1 Cross-Sectional Properties 

The cross-sectional dimensions were measured by a micrometer 

and the actual properties were compared to their corresponding nominal 

values given in the manual of steel construction. The results for the 

S5xl0 section used for the beams and the W6xl2 section used for the 

columns are given in Table 3. 

4.3.2 Tension Coupon Tests 

Two coupons cut off the flanges and two off the web of each 

of the beam and column sections were tested in 300 kips screw type 

testing machine, The coupon shape and the testing procedure conformed 

with those described in ASTM Standard Specification A370. The load and the 

associated strain along an eight-inch gage length were measured and plotted by 

means of an extensometer and a low magnification automatic stress-strain 

recorder. The results thus obtained were compared to the load-strain relation 

obtained from the dial gage readings. Close agreement between both 

was obtained. However, due to the larger strain scale used for the 

dial gage readings, and hence the higher degree of accuracy, these 

readings were used to calculate the modulus of elasticity, E, and the 

other properties listed in Tables 4 and 5. 
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4.3.3 Beam Control Tests 

A beam control test was performed on each of the frame 

beam and column sections to determine the moment-curvature relationship. 

From this relationship the average bending rigidity, EI, and the 

plastic moment, M , for both· sections were obtained. 
p 

The tests yielded the following results: 

For S5xl0, EI = 354480 k' . 2 and M = 209 l.p.l.n. 
p 

For W6xl2, EI 656609 kip.in. 
2 

and M 296 = = 
p 

kip. in. 

kip. in. 

Allowing for measured values of I = 13 in.4 for S5xl0 and 

I = 22.2 in.
4 

for W6xl2 the corresponding values of E are 27300 ksi 

and 29600 ksi respectively. 

The above values have been used in the theoretical predictions. 

4.3.4 Stub Column Test 

A stub column test was performed on the frame column section 

(W6xl2) to determine the average strength of the whole section. The specimen 

was 18 in. long. This length is equal to the minimum length of 3d 

and slightly less than the maximum length of 20 r specified in the 
y 

Guide to Design Criteria for Metal Compression Members. Eight strain 

gages attached at the corners of two sections were used for alignment 

purposes while the shortening in a gage length of 10 in. was meausred 

by two dial gages attached at the middle of the flanges and reading 

in divisions of 0.0001 in. The value of EA was found to be equal to 

101.700 kips.· Allowing for the measured area A= 3.44 in.
2 

gives a value 

of E which is identical to that obtained from the beam control test. 
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4.4 Test Results 

Detailed results of the deflection measurements are given. 

As to the strain measurements, it is impracticable to give the full re-

sults. However, by using a specially developed computer program for 

data reduction the strain readings were converted into bending moments 

and it is in that form the results are reported. 

4.4.1 Deflection Measurements 

The deflections at the first and second floor levels and at 

the mid column height of the upper story will be referred to as frame 

drift at deflection station 1, 2, and 3 respectively. (See Fig. 26) 

The load deflection relations at these three stations of the 

bare frames are given in Fig. 27. Similar relations of the frames 

with composite floors are presented in Figs. 28-31. These figures 

shows the results of tests 2a, 2b, 2c, and 2d respectively. The load

deflection curves of the frames with composite floors and structural 

partitions are presented in Figs. 32-36. These figures show the re

sults of tests 3a, 3b, 3c, 3d and 3e respectively. (See Art. 4.2) 

Loads shown in Figs. 27 to 36 are for an individual frame. 

4.4.2 Strain Measurements 

All the moments measured during tests l-3e are given in 

Table 6. The moments are expressed in kip in. in terms of the applied 

lateral load (kip). The sign convention used is that moments at the 

ends of members are positive when clockwise. For convenience and ease 
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of correlation between the experimental results and their corres-

ponding theoretical values, bending moment diagrams of the bare frames, 

frames with composite floors along the full length of the beams, and 

frames with the various partitions used are also given. These bending 

moment diagrams are presented in Figs. 37-43. Indicated on the moment 

diagrams are the calculated values. The moments are plotted on the 

tension side of the members. 

4.5 Predicted Behavior of Clad Test Building 

Figure 44 shows a frame in the test building having a struc-

tural partition in the middle story. Under the applied load H, the 

frame will drift and will have horizontal displacements 61 , 62 , and 

6
3 

at the three levels indicated. Due to the presence of the par

tition a restraining force H' will be developed at level 2 while a 

reactive restraining force H' is developed at level 1. 

For the frame the actual displacements are given by: 

61 H614 H'612 + H'o ll 
(49) 

62 = H624 H '622 + H'o (50) 21 

63 = H634 - H'632 + H'63l (51) 

From Eqs. 49 and 50 the relative displacement between 

levels l and 2 is given by: 

For the partition and with reference to Fig. 44, the relative 

displacement between levels l and 2 is given by: 

C H' (53) 
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Equating the·relative displacement in Eqs. 52 and 53 leads 

to: 

H' = H (54) 

Having thus determined the force H' due to the presence of 

the partition, the actual displacements are found by back substitution 

in Eqs. 49, 50 and 51. 

The flexibility coefficients appearing in these equations 

have been found from an elastic analysis of the frame under 1 kip 

loads applied individually at 1, 2 and 4. In this analysis, allowance 

made of the composite floors. resulting displacements -3 was The (10 in.) 

are given be low. 

au = ll.3815 021 19.0842 031 = 20.2006 641 

612 
= 19.0842 622 

= 49.0252 632 
= 62.7331 642 

614 
20.1780 024 

62.1596 634 = 89.3835 044 

Substituting for the flexibility coefficients in Eq. 54, 

H' = 41. 9816xl0- 3 

C+22.2387xl0-3 H 

20.1780 

= 62.1596 

90.7559 

(55) 

Values of C for the partitions in the 5 ft. and 10 ft. bays 

for the two bases of welding the sheet to the edge members on both faces 

of the corrugations and on one face only are calculated in Table 7. 

The corresponding forces provided by the partitions and the associated 

frame deflections at levels 1, 2 and 3 are calculated below. 
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4.5.1 Partitions in 5 ft. Bay - Corrugations Welded on Both Faces 

H' = 
-3 

41.~816xl0 H = 0. 9l H 

(23.78+22.2387)10- 3 

l0- 3H[20.1780-0.91(19.0842-11.3815)] -3 
lil = 13.0xl0 H in. 

l0- 3H[62.1596-0.91(49.025Z-19.084Z)J -3 
liz = = 34.9xl0 H in. 

li
3 

~ l0-3H[89.3835-0.91(6Z.7331-20.Z006)] -3 = 50. 7xl0 H in. 

4.5.Z Partitions in 5 ft. Bay - Corrugations Welded on One Face 

H' = 41.9816xlo-3 H = 0 •445H 

(7Z.Z3+ZZ.2387)lo- 3 

li = 10-3H[20.1780-0.445(19.084Z-11.3815)] 
1 

-3 = 16.8xl0 H in. 

liz = l0-
3
H[6Z.l596-0.445(49.oZsZ-19.084Z)J 

-3 
48.8xl0 H in. 

l0-3H[89.Z835-0.445(6Z.7331-ZO.Z006)l = 70.5xl0- 3H in. 

4.5.3 Partitions in 10-ft Bay - Corrugations Welded on Both Faces 

-3 
41.9816xl0 H = l. 3ZH 

(9.6Z+ZZ.Z387)lo-3 H' = 

lil = l0-3H[ZO.l780-1.3Z(19.0842-11.3815)] 

liz= 10-
3
H[6Z.l596-1.32(49.ozsz-19.o842)l = 

li
3 

= 10-
3
H[89.3835-1.3Z(6Z.7331-ZO.Z006)l 

-3 
lO.OxlO -H in. 

-3 
ZZ.7xl0 H in. 

-3 
33.Zxl0 H in. 

4.5.4 Partitions in 10 ft. Bay - Corrugations Welded on One 
Face Only 

H' = 41.9816xl0- 3 
H = 0.79 H 

(30. 89+ZZ. Z387) lo- 3 
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10- 3H[20~1780-0.79(19.0842-11.3815)] -3 
61 = = 14.0xl0 H in. 

l0-3H[62.1596-0.79(49.0252-19.0842)J -3 
62 = 38.6xl0 H in. 

l0-
3
H[89.3835-0.79(62.7331-20.2006)] -3 

6 = = 55.8xl0 H in. 
3 

4.5.5 Partitions in Both the 5 ft. and 10 ft. Bays - Corrugations 
Welded on Both Faces 

This case needs special consideration. Let the shear 

flexibilities of the partitions in the 5 ft. and 10 ft. bays be cl 

and c
2 

and the forces provided by them be Hi_ and H~ respectively. 

The actual relative displacement between floor levels 1 and 2 will 

then be given by: 

62- 61 C1Hi_ .- C2H2 (56) 

The total force provided by the partitions H' is given by: 

H' = H' + H' 
1 2 (57) 

From Eqs. 56 and 57 

H' = 
c2 

H' and H' 
cl 

H' = 1 cl+c2 2 cl+c2 
(58) 

From Eqs. 56 and 58 

62 61 = 
clc2 

H' 
cl+c2 

(59) 

Eq. 59 can be expressed as: 

62 = 61 = CH' (60) 

where C, an equivalent flexibility of the two partitions, is given by: 

c (61) 
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Equating the relative displacement in Eqs. 60 and 52 leads to the 

expression for the total force provided by the partitions. 

H' (62) 

Once this force is found the part taken by individual partitions may 

be found from Eq .. 58. Subsltituting for indivjdual partitions flexibility 

from Table 7 into Eq. 61 gives the equivalent flexibility of the two 

partitions. 

c = 

H'= 

-6 23.7 8x9. 62xl0 

(23.78+9.62)10- 3 

41.9816xl0-3 

(6.87+22.2387)10- 3 

= 6.87xl0- 3 in/kip 

H = 1.44 H 

of which Hi is taken by the partition in the 5 ft. bay and H~ is taken 

by the partition in the 10 ft. bay. 

-3 
H' 

9.62xl0 
x 1.44H = 0.414H 

1 (23.78+9.62)10-
3 

H' 23.7 8xlo- 3 
X 1.44H = 1.026H 

2 (23.78+9.62)10- 3 

10-3H[20.1780-1.44(19.0842-11.3815)l 
-3 

61 = = 9.lx10 H in. 

l0-
3
H[62.1596-1.44(49.0252-19.0842)l 

-3 
62 = = 19.0xl0 H in. 

l0- 3H[89.3835-1.44(62.7331-20.2006)l -3 in. 63 = 28.2x10 H 

The forces provided by the partitions and the actual drift of 

clad frames calculated in this section will be used in the subsequent 

analysis of the results. 
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4.6 Analysis of Results 

In the analysis of the test results and the assessment 

of their significance attention will be concentrated on the following 

two aspects: 

4.6.1 

1. The difference in structural behavior between completed 

buildings and idealized bare frames. 

2. Agreement between observed behavior and that predicted 

according to the theory proposed in this report. 

Bare Frames 

Using the properties of the beam and column sections deter

mined from the control tests the frame was subjected to a first order 

elastic analysis. The calculated deflections at deflection stations 

1, 2 and 3 are. shown together with the measured values in Fig. 27. 

It is seen that the frames are slightly more flexible than predicted. 

This additional flexibility must be due to lack of complete rigidity 

in the frame joints at mid column heights and some slip at the upper 

and lower boundaries. Evidence of that slip at the boundary may be 

seen in the bending moment diagram of the bare frame shown in Fig. 37 

where the column moments in the upper and lower stories exhibit some 

form of shear lag. Apart from this effect the measured moments seem 

to be in good agreement with the calculated values. The accuracy of 

the results has been checked by the consideration of the moment equili

brium of all the joints and the shear equilibrium of the three stories. 

The out of balance moments at the various joints ranged between 2% 

and 7% of the applied joint moments, and the out of balance shear in 

the three stories ranged between 2% and 6% of the applied shear. 
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4.6.2 Frames with Composite Beams 

In test 2a where the frame beams were made composite in the 

positive moment regions under gravity loads (the middle part of the 

beams of about 0.6 of the span length), almost no change in the be

havior of frames were recorded. This can be seen by comparing the 

deflections measured during this test and presented in Fig. 28, and 

the deflections of the bare frame shown in Fig. 27. It can also be 

seen by comparing the corresponding moments in Columns 2 and 3 of 

Table 6. 

In test 2b where the same floors were engaged to the column 

faces a noticeable reduction in the building drift was recorded. 

This reduction amounted to about 15% of the bare frame drift. 

tn test 2c where the beams were made composite a1ortg their 

full length, a slight increase in the building stiffness was noticed 

This increase, however, was still less than that recorded during the 

2b where the beams were made composite only in the positive moment 

regions but with the floors engaged to the column faces,, The corres

ponding theoretical deflections showed in solid lines in Fig. 30 were 

calculated on the basis of the frames having composite beams along 

their full lengths and allowing for the gaps in the floor near the 

columns. The effective slab width considered in the calculations cor

responds to that specified by the AISC; 27 in. for the beams in the 

10 ft. bay and 5 in. for the beams in the 5 ft. bay. The modular ratio 

was taken equal to 9. On this basis, the calculated and the 

measured deflections are in a very good agreement. Also the cal-
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I 
culated bending moments shown in Fig. 38 differ from the measured 

values by nearly the same amount found in the earlier test on the 

I bare frames. Since, as mentioned before, all the tests on the building 

with partitions were conducted with the beams made composite as in 

I test 2c, the frame behavior during this test, rather than that of the 

bare frame, is considered as the basic behavjor when comparing the 

I relative effects of the partitions • 

. 
I In test 2d, which was similar to test 2c except that in the 

I 
former test the floors were engaged to the column faces, the building 

showed a noticeable increase in stiffness. This increase in stiffness 

I which amounted to about 15% is the same as thatrecorded in test 2b 

where the beams were made composite only in the positive moment regions. 

I It seems, therefore, that as long as the concrete floors are engaged 

I 
to the column faces, composite beams have the same stiffening effect 

regardless of whether the beams are composite along their full lengths 

I or part of their lengths. 

I 
4.6.3 Frames with Structural Partitions 

The deflections of the clad frames with the different par-

I titions and attachments used have been calculated in Section 4.5. 

These calculated deflections are plotted with their corresponding 

I measured values in Figs. 32-36. It is seen from these figures that 

I 
an extremely good agreement exists between the measured and calculated 

values for all the cases considered of the partitions in the 5 ft. 

I bay, the 10 ft. bay and both bays, and also with the sheets welded 

to the edge members on one face and both faces of the corrugations. 

I 
I 
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In order to show the appreciable effect structural partitions 

have on the stiffness of the building and be able to draw a proper com-

parison between the behavior of the clad frames and that of the basic 

frame the deflections of the basic frame (test 2c) and the deflections of 

the frames with partitions (tests 3a-3e) are summarized in Table 8. The 

deflections in this table are expressed in terms of the applied load in 

-3 units of 10 in. Table 8 also includes the relative displacements between 

levels 1 and 2. Since the partitions were installed between these two levels 

only, these relative displacements will be considered in evaluating the 

stiffening effect of partitions. The reduction in drift given in the last 

column of Table 8 is expressed as a percentage of the drift of the basic frame 

(test 2c). It can be seen that when the partitions were installed in the 5 ft. 

bay and with the sheeting welded to the edge members on one face of the cor-

rugations the drift was reduced by 23.8%. With the partitions still in the 

5 ft. bay but with the sheeting welded to the edge members on both faces of 

the corrugations the reduction in drift was more than doubled. When the par-

titions were installed in the 10 ft. bay with the sheeting welded to the edge 

members on one face only the drift was reduced by 41.4%. When the same 

partitions were welded on both faces of the corrugations the reduction in 

drift was further increased to 67.3%. When the partitions were installed 

in both bays with the corrugations welded on both faces a drastic reduction 

in drift of 76.3% was recorded. 

The bending moments in the clad frames with the five dif-

ferent partition arrangements used have been calculated. The calcula-
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I 
tions were based on the forces provided by the partitions calculated 

in section 4.5. Considering the complexity of the completed test 

I building and the lack of complete rigidity in the joints and the 

slip at the boundaries noticed during earlier tests on the bare frames 

I and the frames with composj_te floors, the calculated and observed 

moments are in reasonable agreement. Also both moments bear the same 

I general feature of reductions in the column moments of the middle 

I 
story where partitions were installed. When the partitions were 

relatively stiff as in tests 3b, 3d and 3e the reductions were so 

I great that some of the column moments reversed sign. 

I In order to check the results and have a measure of the 

share of the applied load resisted by the partitions and the net loads 

I on the frames, the shear resisted by the columns of each of the three 

I 
stories of the test building were calculated from the moments measured 

during the various tests and in each case compared to their corres-

I ponding theoretical values. The results are presented in Table 9. 

All the shears entered in this table are expressed in terms of the 

I applied lateral load. The theoretical shears are based on the cal-

culations in section 4.5 while the measured shears are based on the 

I measured moments presented in Table 6. The measured shears were cal-

I culated according to the following formula: 

First story shear 
1 

(Ml+ M5+ M9) (63) = 21 

I Second story shear 
1 

(M2+ M3+ M6+ M7+ MlO+ Mll) (64) = 42 

Third story shear 
1 

(M4+ M8+ M12) (65) = 21 I 
I 

where M
1

- M
12 

are the column moments recorded at strain stations 

I 
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number 1-12, and 21, 42, and 21 are the corresponding moment arms in 

inches. 

A study of the shear forces in Table 9 shows that the 

shears in the first and third stories recorded during all tests are 

very close to the applied lateral load. The maximum difference be

tween the observed and calculated shears is less than 7% and in most 

cases much less than this figure. 

The shears in the second story are of special interest. Only 

when partitions were installed did the shearing force in this story 

show any difference to the shearing forces in the first and third 

stories. In test 3a where the partitions was installed in the 5 ft. 

bay and with the sheeting welded on one face of the corrugations the 

observed shear resisted by the frames was about 60% of the applied 

lateral loads and the remaining 40% resisted by the partitions. These 

correspond to calculated values of about 55% and 45% respectively. 

With the partitions still in the 5 ft. bay but with the sheeting 

welded on both faces of the corrugations the observed shear resisted 

by the frames was about 17% of the applied loads while the -reamining 

83% was taken up by the partitions. These correpond to calculated 

values of 9% and 91% respectively. When the partitions were installed 

in the lOft. bay and with the sheeting welded on one face of the 

corrugations the observed shear resisted by the frames was about 31% 

of the applied lateral load while the remaining 69% was taken up by 

the partitions. These correspond to calculated values of 21% and 79% 

respectively. When the same partitions were welded on both faces of 
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the corrugations the observed shear resisted by the frames was about 

22% of the applied load and of reversed sign. The partitions then 

carried a shearing force of about 22% more than the applied load. The 

corresponding calculated value is 32% more than the applied load. 

Finally when the partitions were installed in both bays, the observed 

shear resisted by the frames was about 33% of the applied shear load 

and of reversed sign. The partitions then carried a total load of 

1.33 times the applied load. The 'corresponding calculated value is 1.44 

times the applied load. 
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5. ULTIMATE STRENGTH TESTS 

5.1 Testing Procedure 

After completion of all the initial elastic tests described 

in this report, a pilot program was undertaken to determine the ultimate 

strength of the clad frames. Before testing, each frame consisting of 

steel columns and cornposite beams, was structurally isolated from the 

others, thereby providing three test frames. Two frames were tested with 

structural partitions installed. The third frame was tested without par

titions and used for comparative purposes. Each frame was displaced at 

the top by a single horizontal screw jack in a manner similar to that 

shown in Figs. 13 and 22. No axial loads were applied to the columns. 

Only deflections of the frame and jack loads were recorded. No strain 

gage data from the frames was recorded. The ultimate strength tests were 

terminated only after significant distortion and tearing of the structual 

partitions had occurred. To prevent premature failure of the half-storys 

above and below the story containing a partition each frame had diagonal 

bracing placed in the 10-ft. bay. The diagonal bracing used was l-in. 

diam. steel rods. Figure 45 shows the diagonal bracing in the bottom 

half story. The diagonal bracing in the top half story was similar. 

The structural partitions used here were the same ones that had 

been used in the initial elastic tests and described in Chapters 3 and 4. 

It was found that after these tests, the partitions and frames were slightly 

distorted. In order to place the partitions back into the frames for the 
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ultimate strength tests some cutting and fitting had to be done along 

the bottom of each partition where it connected to the composite beam. 

As a result the initial elastic stiffness of each partition was altered. 

Since the correlation between elastic predictions and test re

sults was already shown, the purpose of the ultimate strength tests was 

mainly to determine qualitatively the behavior of the integrated fram~ 

floor-wall system under large lateral load. In addition the qualitative 

lateral load versus shear behavior of each partition was desired under 

large shear distortion. 

5.2 Test Program 

Three ultimate strength tests were performed, one for each 

frame. For frames 1 and 2 (Fig. 23) partitions were installed in the 

10-ft. and 5-ft. bays respectively. The partitions used and the method 

of fastening them to the frames are described in Art. 3.3.3. The sheets 

were welded to the edge members on both faces of the corrugations as 

for tests 3b and 3d (Art. 4.2). The tests are numbered as follows: 

Frame 1: Structural partition in 10-ft. bay only. (Similar to Fig. 21) 

Frame 2: Structural partition in 5-ft. bay only. (Similar to Fig. 46) 

Frame 3: No structural partitions (frame-floor system only) 

5.3 Control Tests 

Cross-sectional and material properties of the S5xl0 and W6xl2 

steel sections are given in Art. 4.3. The average yield stress level of 

the 24 ga. steel sheet used in the partitions was 39.6 ksi. 
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5.4 Test Results 

The load-drift behavior of Frames 1, 2 and 3 are shown in 

Figs. 47, 48 and 49 respectively .. In each figure the measured horizontal 

jack load at station 4 is plotted against the horizontal drift of stations 

1, 2 and 3 relative to the reference station A (Fig. 26). The irregular 

behavior of the frames as shown in Figs. 47 and 48 can be attributed to; 

(1) sudden slip between the partition edge member and the concrete floor 

slab (Fig. 19); (2) sheet distortion between seam fasteners, and (3) tearing 

of the sheets near the edge members. 

Figure SO shows the partition in the 10-ft. bay of Frame 1 after 

the ultimate strength test. Considerable crimping of the corrugations can 

be seen along the lower side where the edge member was fastened at small 

intervals to the floor system (Art. 3.3.3). Very little crimping of the 

corrugations occurred along the upper side where the edge member was 

fastened to the frame only at the two corners (Art. 3.3.3). 

Considerable tearing, twisting and out of plane bending of one 

complete corrugation occurred almost exactly at the mid-point of the 

partition and is clearly evident in Fig. 50. The seam fasteners were 

closely spaced which prevented large distortions of the sheet between 

fasteners or significant movements at the fasteners. 

Figure 51 shows the partitio.n in the 5-ft. bay of Frame 2 near 

the ultimate load. Buckling of the sheet between seam fasteners can be 

seen. This type of sheet distortion as well as tearing and twisting of 

the corrugations was also evident at the ultimate load. The overall 
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I appearance of both the 5-ft. and 10-ft. partitions after the ultimate 

strength had been reached was similar. 

I 
5.5 Analysis of Test Results 

II The test results used to plot the curves in Figs. 47 to 49 were 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

also used to obtain an indication of the lateral load versus shear 

behavior of the structural partitions in the test frames. The load

drift behavior of Frame 3 (Fig. 49) was assumed to be the same for all 

three frames in the absence of partitions. The increased lateral load 

obtained for Frames 1 and 2 therefore represents the shear force H' carried 

by the partition, providing that the partition does not restrain the flexural 

behavior of the beams and columns. Although the partitions were contin-

uously connected to the composite beam along the lower edge it was assumed 

that the restraint provided to the beams was minimal. 

Figure 52 shows the relationship between H' and the relative 

drift between levels 1 and 2 (Fig. 26) for the partitions in the 10-ft. 

and 5-ft. bays. The curves agree with the behavior suspected by previous 

investigators. Light gage steel structural partitions develop high initial 

shear stiffness. As a result, the partition will initially carry a signifi-

cant share of the shear carried by the frame-floor-wall system. However, 

because the structural partition material is very thin it will begin to 

tear in the vicinity of the fasteners resulting in a sharp reduction in 

shear capacity. Evidently, as the shearing distortion increases, a r~ 

distribution of forces occurs, resulting in a stabilizing of the shear 

c.spacity. This was likely due to the development of tension field 

action in the structural partition. 
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6. SUMMARY CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

The research reported herein has investigated the structural 

interactions which occur between steel frames, composite steel-concrete 

floor systems and wall systems consisting of light gage ribbed or corrugated 

steel sheet partitions or cladding in multistory buildings. The design 

criterion for such buildings over about twenty stories and employing 

rectangular unbraced steel frames with moment resisting connections is 

usually drift at working loads rather than overall strength. (JS) To 

design for drift by increasing only the frame member sizes (usually the 

beams) is somewh3t uneconomical and not entirely rational. This procedure 

ignores the stiffening effect due to interactions which already exist 

between the steel frames and the floor and wall systems. Some of these 

interactions are structural in nature and some may be potentially 

structural. Significant differences were shown to occur between the 

calculated and actual stress resultants in the frames if these 

interactions are ignored. In fact some stress resultants can be completely 

reversed. 

A theoretical and experimental investigation was undertaken 

at Fritz Laboratory to study the structural interactions which can and 

do exist between unbraced frame, floor and wall systems. In addition 

the study included the development of a method whereby the stiffening 

effects of these elements can be included in design for drift. 



I -b3 

I 
I 

The frames considered in the investigation were rectangular 

·unbraced steel frames with rigid connections. The floor system was 

I assumed to be either solid concrete or concrete on metal deck both 

of which are made composite with the frame beams. The wall system 

I considered was either interior structural partitions or curtain 

I 
walls or both, made of light-gage corrugated or ribbed steel sheeting. 

I Studies of the frame-floor system interaction at Fritz 

Laboratory are still in progress and the results are reported 

I elsewhe~e. 
(21, 48, 49) 

Apart from a brief investigation of the 

I 
frame-floor interaction studies, this study focused mainly on the 

frame-wall interaction phase of the program. 

I 
An analytical treatment of the frame-wall system interaction 

I was undertaken and a method suggested for considering the effect of 

I 
structural partitions and cladding on frame behavior. The method is 

based on the flexibility coefficients of the steel frame and is 

I applicable regardless of the material used for the wall system. The 

stiffening effect of the floor system was found to be easily included 

I by replacing the influence coefficients of the steel frame alone by 

I 
those of a steel frame having composite steel-concrete beams. The basis 

(21 48, 49) 
of the method of computing these coefficients is reported elsewhere. ' 

I 
An approximate method for estimating the drift of a clad frame 

I was also developed. The accuracy of this method was checked by comparison 

I 
I 
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with the results of a design example using an exact procedure. 

The results of an experimental investigation of a large 

size test building were presented. The test building was designed to 

explore the integrated behavior of multistory buildings under gravity, 

lateral and combined loading conditions. However, the investigation 

was limited to experiments with the lateral loading conditions only. 

The experiments which were carried out included tests on the bare steel 

frames, on the frames with composite concrete floor systems, and with 

structural partitions. Emphasis was placed on the stiffening effect of 

the structural partitions on the overall building behavior. The test 

results showed good agreement with predicted results in all cases. 

Finally, the test building containing the composite floor 

system and structural partitions was tested to its maximum capacity 

under lateral loads only. The test was conducted in such a way that 

the shear force versus shear distortion relationship for the structural 

partitions within the test building could be obtained for large 

distortions. 

6.2 Conclusions 

The major conclusions of this investigation are divided into 

the two primary study areas: (1) frame-floor system interaction and 

(2) frame-floor-wall or frame-wall system interactions as follows: 
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I 
I 6.2.1 Frame-Floor System Interaction 

1. The analysis and the experimental results showed that 

II significant interaction occurs between the steel frames 

I 
and the composite floor system. The interaction is 

somewhat dependent on establishing full contact or bearing 

I between the steel columns and the surrounding concrete floor 

when considering lateral loads. 

I 2. Frame-floor system interaction can be considered by 

I 
replacing the frame beams with a composite beam having the 

properties of the composite floor system, resulting in 

I another equivalent frame. 

3. This study showed that frame-floor system interaction 

I resulted in smaller building drift under working loads than 

that obtained considering the frame alone. 

I 4. Related studies reported elsewhere indicate that frame-floor 

I system interaction significantly increases frame strength 

. (21 48 49) 
and st~ffness. ' ' 

I 
6.2.2 Frame-(Floor)-Wall System Interaction 

I 1. The frame-(floor)-wall system interaction has a major 

I 
effect on reducing building drift under working loads 

and should be considered rn design. 

I 2. Relatively simple and straight forward analysis and design 

procedures have been developed which can account for frame-

I wall system interaction and its'effect on drift, as well as 

I 
frame and wall system stress resultants. 

I 
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3. There exists several fundamental differences between the 

previous work reported on roof and deck panels and their 

influence on building behavior, and the present work on 

structural partitions. Both have concerned the influence 

4. 

s. 

of light gage ribbed or corrugated steel panels on building 

behavior. However differences occur concerning the direction 

of shear resistance relative to the corrugation generators, 

the method of fastening the panels to edge members and the 

number and location of connections between the edge members 

and the frames. 

Frame-wall system interaction in buildings can be easily 

considered in design by designating certain permanent 

interior or exterio~ partition or wall elements as structural 

partitions or structural cladding and proportioning them 

for the loads transmitted to them. The results will be 

two-fold: (1) the calculated stress resultants in the steel 

frames and the structural partition or cladding elements 

will be closer to reality, and (2) drift under working loads, 

being related to the actual interactions between the frame 

and wall systems will be more predictable. 

Experiments on the large-size test building showed that the 

stress resultants in the steel frame are considerably 

different depending on whether the analysis considers the 

actual structural interactions between the frame and the 

floor and wall systems or ignores them. In fact some of the 

stress resultants can be of opposite sign. 
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I 
6. The experiments also showed that frame-(floor)-wall system 

II interaction substantially reduces building drift under 
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lateral loads. 

7. Light-gage structural partitions can be effective for drift 

control at working loads. However under increasing loads 

they lose considerable strength due to distortion and 

tearing of the sheets along the perimeter and at the seam 

fasteners. It is likely that structural partitions can be 

designed for drift control providing the frame and floor 

systems are adequate for strength if the capacity of the 

structural partitions is exceeded. 

6.3 Recommedations 

The following recommendations are based on the investigation 

reported herein. Many of them reinforce the recommendations contained 

in the Co~nell report. <37 ) 

1. Research in progress at Fritz Laboratory on frame-floor 

system interaction is investigating the moment capacity 

and ductility of composite beam-to-column connections for 

use in unbraced frames with fully welded steel beam-to-

column connections. Further research is required on composite 

connections where the steel beam-to-column connection is of 

the simple shear or semi-rigid type. 

2. The substantial drift reductions achieved by considering 

frame-floor-wall system interactions in multistory buildings 

warrants a serious study of many practical factors involved 
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such as (1) the best detail at a column slab interface to 

achieve full bearing, (2) practical and effective connections 

between light-gage structural partitions and supporting 

members, (3) the most efficient profiles for light-gage 

structural partitions, and (4) construction details to 

ensure that structural partitions or cladding can not 

easily be removed while the building is in service. 

3. Further research is required on the ultimate strength 

behavior of multistory frames with structural partitions. 

The research reported herein as well as that completed by 

Oppenheim(
42

) suggests that partitions designed for drift 

control may not contribute to overall building strength. 

The light-gage structural partitions considered in this 

investigation have high shear stiffness and were designed 

to resist a considerable share of the story shear below 

the working load level; However under high shearing 

distortion, tearing of the sheet, and buckling and distortion 

between fasteners substantially reduced the shear capacity of 

the structural partition. In this case the frame-floor 

system alone would be designed to resist the maximum combined 

gravity and lateral loads. Further research should explore 

the relationship between frame-structural partition stiffness 

ratios for low load levels and frame-structural partition 

strength and ductility ratios for large load levels and 

large values of drift. The effect of structural-partitions 

on overall building failure modes needs investigation. All 

of these studies should include the P- !J effect. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

4. Further large scale three dimensional tests of steel framed 

buildings are required which would investigate the influence 

of structural partitions at high load levels where P-~ 

effects and panel shear distortion are large. These tests 

would be designed to investigate the stiffness, strength 

and ductility ratios mentioned above, and the mode.s of 

failure. They would also assist in the development of 

analytical methods to predict the ultimate strength of 

buildings with integrated frame-floor-wall systems. 

- 89 
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8. NOMENCLATURE 

Cross-Sectional area of edge members 

Coefficient matrix 

-91 

Width of partition (measured parallel to the corrugation 

generator). 

Cross-Sectional area of horizontal edge members 

Cross-sectional area of vertical edge members 

Floor displacement vector 

Length of partition 

Average sheet width b/n 
c 

Shear flexibility of frame columns defined in Eq. (9) 

Shear flexibility components of partitions 

Flexibility coefficient matrix 

Joint displacement vector 

Pitch of corrugation 

Modulus of elasticity 

Load vector 

The shear modulus 

Applied lateral load 

Restraining force provided by part-ition 

height of corrugation 

Moment of inertia of column section 

Factor depending on the geometry of the corrugation pro

file and the attachments to the edge members, defined in 

Eqs. 37 and 38. 
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The structure stiffness matrix 

Story height 

Widths of crest of corrugation 

Number of joints in frame 

Number of stories of frame 

Number of corrugation in partition = b/d 

Pitch of edge fasteners 

Pitch of fasteners along vertical edge members 

Pitch of fasteners along horizontal edge members 

Pitch of seam fasteners 

Shearing force on partition 

Shear stress in sheet 

Relative flexibility factor, defined in Eq. 17 

Local deformation at each edge fastener per unit load 
I 

"crimping" 

Local deformation at each seam fastener per unit load 

Thickness of sheet 

Strain energy 

Shear strain energy per unit volume 

Factor depending on corrugation profile 

developed length of corrugation 
projected length of corrugation 

Shear distortion of partition 

Actual drift of clad frame 

Drift of bare frame 

Flexibility coefficient; drift at floor level i due to a 

unit load at floor level j 

Poisions ratio 

-92 
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-------------------
TABLE 1 SHEAR FLEXIBILITY OF PARTITIONS 

Shear Flex. Component Partition Type 1 Partition Type 2 Partition Type 3 

C = Zaa (1 +v) = 
2xl.5xll4(1+0.25~ 

1 E b t 30000x346x0.0478 

-3 in/kip -3 in/kip 0.86xl0-3in/kip = 0.86xl0 = 0.86xl0 = 

c2 = 
(b3+ }) 

= p463+ 11432 = p463+ 1143} 

6 EA b
2 6x29000x 0. 87 5x346 

2 
6x29000x0.938x346

2 

= 2.35xl0- 3 in/kip = 2.18xl0-3in/kip = 2.18xl0-3in/kip 

144 K h
3 

£
2 144x0.125xl.53x32 

3 2 144x0. 07 3x 1. 5 x3 
c3 = ------ = 

3 
a b d 30000x0.04783xll4x346x6 3000Ck0.04783x 114x34 6x 6 E t 

= 0.7lxl0- 3in/kip = 0.4lxlo-3in/kip 

c4 
2 s p (a + b) 2x0.08x6(ll4 + 346 ) = 2x0.08x3(ll4 + 346 ) = ------ = 

b2 346
2 

346
2 

= 3.70xl0- 3in/kip = 1.85xl0-3in/kip 

a p's' 144x6x0.008 
cs = = 

b bo 346x34 

= 0.46xl0-3 in/kip = 0.46xl0-3in/kip = 0.46xl0- 3in/kip 

5 

I 7.9lxl0-3in/kip c = r: c 3.67xl0-3in/kip 5.76xlo-3in/kip 
1 

-. -··--~--·------~ ..... ------·...,....·-~ ....... 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

LEVEL 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
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TABLE 2 OUTPUT FOR C -3 
5.76 x 10 in/kip 

RESTRAINT FORCES 

. 63425E+O 1 

. 56535E+O 1. 

.38974E+01 

.46068E+01 

. 23328E+01 

.40134E+01 

.24492E+01 

. 35271E+01 

. 27402E+01 

.31753E+01 

.15178E+01 

.21759E+01 

. 64710E+OO 
-. 90911E-01 
- .15119E+02 

NET FORCES ON FRAME 

. 85 7 5484E+OO 

.1546506E+01 

.3302632£+01 

. 25 93187E+01 

. 486 7166E+01 

.3186640£+01 

.4750844£+01 

. 36 72 93 9E+01 

. 445 9768E+01 

.4024704£+01 

. 5682184E+01 

. 5024126E+01 

. 6552901E+01 

. 7290911E+01 
• 2231872E+02 

ACTUAL DISPLACEMENTS 
.2519733E+01 
. 2483200E+01 
.2414104E+01 
. 2322558£+01 
. 22044 7 8E+01 
. 2072960E+01 
.1918325E+01 
.1749583£+01 
.1560525£+01 
.. 1355684£+01 
.1132552£+01 
. 90067 84E+OO 
• 6562715E+OO 
.4081373E+OO 
.1605267E+OO 

S.F. IN WALL 

.6342452£+01 

.1199595£+02 

.1589331£+02 

. 2050013E+02 

. 22832 96E+02 

. 2684632E+02 

.2929548E+02 

. 3282254E+02 
• 35562 7 7E+02 
. 3873807E+02 
.4025588£+02 
.424317 6E+02 
.4307886£+02 
.42 987 95E+02 
• 2 7 86 922E+02 
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TABLE 3 CROSS SECTIONAL PROPERTIES 

S5xl0 W6xl2 

Nominal Measured Nominal Measured 

2.94 2.95 3.54 3.44 

5.00 5. 064 6.00 6. 07 

3.004 2.990 4.00 4.023 

0.326 0.329 0.279 0.278 

0.214 0.210 0.230 0.208 

12.3 13.0 21.7 22.2 

4.92 5.13 7.25 7.32 

2.05 2.10 2.48 2.54 

5.67 5.91 8.23 8.22 

1.14 1.15 I 1.13 I 1.12 
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TEST 
NO. 

1 

2 

3 

4 
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TABLE 4 MATERIAL PROPERTIES OF S5xl0 

LOCATION 
cr (ks i )_!a ___ rk-s--i-)-.--e-%_T ___ e_lc _______ E __ <_k_s i-)--. 

Y l ult · y I st o 

FLANGE 

FLANGE 

WEB 

WEB 

34.755 

l 
33.882 

. 46.247 

42.738 

' I 

I . 

62.889 

66.652 

72.210 

72.388 

--* 
--* 

--* 

0.15 

0.625 

1 1. ooo 
f 
(: 0.569 

1 i 1.306 

28444 

28199 

28735 

28715 I 
i L-----1---------L--__ _JI_ _____ _____J_. ____ _;_ ______ ._. _____ .___ ______ _ 

TABLE 5 MATERIAL PROPERTIES OF W6xl2 

TEST LOCATION cr (ks i) cr 
1 

(ksi) € % 8 st% E (ksi) ! 
NO. 

y u t y I 
! 

5 FlANGE 36.268 62.038 --* 1.662 29778 

6 FLANGE 35.833 63.235 --* 1.687 30392 

7 WEB 40.116 64.018 0.15 2.540 29716 I 
! 
i 

8 WEB 39.858 61.909 0.14 2.6?5 31283 I 

*Absence of definite yield. 
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TABLE 6 BENDING MOMENTS IN TEST BUILDING 

·~ 1 2a 2b 2c 2d 3a 

Station No. 

1 5.4 I 5.2 5.6 5.6 5.6 5.8 

2 4.7 

I 
5.0 4.1 4.8 4.5 2.8 

3 1.6 1.8 1.8 1.8 1.8 1.2 

4 7.1 
I 

6.8 7.2 7.4 7.5 8.0 I 
5 8.8 

j 
9.4 8.8 8.9 8.2 l 9.5 

I 

6 9.8 I 10.2 10.0 9.8 10.0 6.6 
l 

7 11.8 I 11.6 10.8 11.6 10.8 7.4 l 
i 

8 7.2 I 7.6 7.6 7.0 7.6 7.4 
I 

9 6.0 I 5.4 5.2 5.2 4.8 5.6 
I 
I 

10 6.3 I 6.0 6.4 . 6. 2 6.7 3.6 

I 11 7.2 6.8 8.0 7.2 7.6 3.8 
! 

12 6.2 
l 

6.0 5.6 5.8 5.8 4.8 i 
I 

l3 -9.8 
I ! -10.8 -9.8 -10.6 -10.6 -9.8 
I 

14 -8.4 I -8.8 -10.2 -8.6 -10.2 -7.2 I 
15 -10.7 1-10.0 -8.8 -9.3 -8.4 -7.8 

16 -12.2 1-11.0 -11.4 -11.0 -11.2 -7.2 

17 -10.6 1-10.4 -10.0 -10.8 -10.7 -9.6 

18 -8.4 
i 

-9.6 -10.4 -9.4 -10.8 -10.2 I 
I 19 -10.6 1 -9.4 -8.0 -8.6 -7.6 

I 
-7.2 

I 
I 

20 -12.4 ! -12.6 ,-13.8 -11.9 -12.8 -8.0 I 
i I 

I 

I I i _j_ I 
~ 

3b 3c 

5.6 6.8 

-1.4 1.2 

-3.2 -2.4 

7.8 I 8.4 

8.2 
i 
j 8.2 

I 3.8 5.0 I 
3.2 ' 4.8 j 

: 
6.2 : 7.0 

I 

5.9 i 5.0 
i 
I 

2.5 j 2.2 I 

2.4 I 2.4 

6.4 I 5.6 I 

-6.0 -7.0 

-5.8 -6.8 

-3.2 -5.6 

-4.8 -6.8 

-6.0 
I 
l -7.2 

-6.6 -6.8 

-3.8 -5.2 

-8.8 -7.8 

i 

3d 

7.6 

-1.2 

-6.7 

8.2 

7.8 
! 0.6 

l.O 

I 6.6 

4.3 

-l.O 

-2.0 

5.4 

' -3.8 
I 
1 -3.6 
I 
I -2.0 

1-4.2 

i -5.2 

: -4.8 

l-4. 2 

1-3.8 
i 

3e 

6.8 

-1.6 

-6.4 

8.7 

7.4 

-0.4 

-1.3 

6.2 

5.4 

-1.8 

-2.2 

5.2 

-304 

-2.8 

-1.2 
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-3.8 

-4.6 

-2.2 

-3.0 
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00 
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Shear Flexibility 
Component 

cl = 2aa(l+v2 
E b t 

(b3+ a32 
c2 = 

6 EA b
2 

144 K h
3

..e
2 

c3 = 3 
Et a b d 

2 s p· 
c4 = (a+b) 

b2 

cs = a p's' 
b bo 

5 

1 c 
= l: c. 

1 ~ 

TABLE 7 SHEAR FLEXIBILITY OF PARTITIONS IN TEST BUILDING 

Partition in 5-ft. bay Partition in 10-ft. bay 1--------------.--------------· ~-----·-·· 
Welded on both faces Welded on one face Welded on both faces Welded on one face 

= 2xl.Sx51~1+0.252 = 2xl.Sx51(1+0.25) 
30000x48x0.025 30000xl08x0. 025 

= 5.3125xlo-3 in/kip = 5.3125xlo-3in/kip = 2.36llxlo-3in/kip = 2.36llxl0- 3in/kip 
I 

~483+ 51
32 (108

3
+ 51

32 
! 
i 

= = I 

6x29000x0.28x482 6x29000x0.28xl082 ! 
I 

= 2.1669xl0- 3 in/kip 
j 

= 2.4502xlo-3in/kip ~ 2.1669x1o-3in/kip = 2.4502x1o-3in/kip I 
I 
i 
I 

3 2 
144x0.073xl.5 x3 I 3 2 

144x0.073xl.5 x3 ----- ----- 30000x0 .025x 48x10 8x6 
3 OOOOxO. 0253x48 x51x 6 

= 46.3769x10- 3in/kip 

I 
= 20.6152x10-

3
in/kip 

2x0. 008x3 (S 1-f.4 8) = 2x0.008x6(Sl+4S) 2x0.008x3(Sl+108) 2x0.008x6 = = 

' 
= (51 +108) 482 482 1082 i 1082 

= 2.065xlo-3 in/kip = 4;i3x10-3in/kip = 0.65x1o-3in/kip ! = 1.30x1o-3 in/kip 

51x4x0.08 51x4x0.08 I = = 48x24 108x36 

= 14.24x10_;3in/kip -3 -3 I 4.16x10-3in/kip = 14.24x10 in/kip = 4.16x10 in/kip = I 

I 
23.78xl0- 3in/kip 72.23x1o-3in/kip -3 9.62x10 in/kip I 30.89xlo-3in/kip 

I 
\0 
0" 
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TABLE 8 REDUCTION IN DRIFT OF CLAD FRAMES 

Test No. 61 62 63 62-61 
Reduction 
in Drift 

2c 20.2 62.2 89.4 42.0 -

3a 16.8 48.8 70.0 32.0 . 23. 8% 

3b 13.0 34.9 50.7 21.9 47.8% 

3c 14.0 38.6 55.8 24.6 41.8% 

3d 10.0 22.7 33.2 12.7 67.3% 

3e 9.1 19.0 28.2 9.9 76.3% 
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TABLE 9 STORY SHEAR IN TEST BUILDING 

.,.. ...... ____ ·-·-
First Story Shear Second Story Shear 

Test No. 
Measured ~ 

Theoretical Measured Theoretical ' I ' 
-· 

t I 
l I 
I 

l 0.965 l.OOO 0.988 i l.OOO 
: i : ! 

i 
' I 
f i 

l.OOO 0.986 : l.OOO ! 2a 0.955 I 
I 

I ' I I 

i I 
l.OOO ! 2b 0.932 l.OOO 0.978 i 

' i 
' 2c 0.940 I l.OOO 0.986 1.000 

I 2d 0.950 l.OOO 0.986 l.OOO 
! 

I 
I 
' i 3a 0.933 l.OOO 0.605 0.555 I 

·' 

i 3b 0.938 l.OOO 0.174 0.090 
' ' i 
I 

I 3c 0.952 l.OOO 0.314 0.210 
I 
I 

I 3d 0.938 l.OOO -0.221 -0.320 

3e Oo934 l.OOO -0.326 -0.440 

-. 

Third Story Shear 

Measured l Theoretical 

0.977 I l.OOO 

' ' I 

0.973 ~ l.OOO I 
i 

' 0.973 ! l.OOO 

0.966 I 1.000 
i 

0.998 

I 
l.OOO 

i 

I 0.962 1.000 
I 

0.972 I 1.000 I 
loOOO 

I 
l.OOO 

l.OOO 0.962 

0.955 l.OOO 

' 

~ 

i; 

" 

I 

i 

1 
; 

: 

I 

I 
I 
' 

l 
I 
' I 
I 
! 
,i 

I 
r-' 

g 
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FIG. 13 TEST BUILDING WITH CONCRETE FLOORS 
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FIG. 15 UNFINISHED FLOOR PANEL 

FIG. 16 FLOOR SHEAR CONNECTORS 
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FIG. 17 WEDGE ASSEMBLY 

FIG. 18 TYPICAL PARTITION CORNER CONNECTION 
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FIG. 19 PARTITION LOWER EDGE CONNECTION 

FIG. 20 5-ft. BAY PARTITION 
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FIG. 21 TEST BUILDING WITH PARTITIONS IN 10-ft. BAY 
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FIG. 24 HORIZONTAL L~DING APPARATUS 
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FIG. 25 TEST BED DURING ERECTION 
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