8,608 research outputs found

    Hemiparasitic plant impacts animal and plant communities across four trophic levels

    Get PDF
    1.Understanding the impact of species on community structure is a fundamental question in ecology. There is a growing body of evidence that suggests that both sub-dominant species and parasites can have a disproportionately large impact. 2.Here we report the impacts of an organism that is both subdominant and parasitic, the hemiparasite Rhinanthus minor. Whilst the impact of parasitic angiosperms on their hosts and, to a lesser degree, co-existing plant species, have been well characterized, much less is known about their impacts on higher trophic levels. 3.We experimentally manipulated field densities of the hemiparasite Rhinanthus minor in a species rich grassland, comparing the plant and invertebrate communities in plots where it was removed, at natural densities or at enhanced densities. 4.Plots with natural and enhanced densities of R. minor had lower plant biomass than plots without the hemiparasite, but enhanced densities almost doubled the abundance of invertebrates within the plots across all trophic levels, with effects evident in herbivores, predators and detritivores. 5.The hemiparasite R. minor, despite being a sub-dominant and transient component within plant communities that it inhabits, has profound effects on four different trophic levels. These effects persist beyond the life of the hemiparasite, emphasizing its role as a keystone species in grassland communitie

    Program for transfer research and impact studies

    Get PDF
    Research activities conducted under the Program for Transfer Research and Impact Studies (TRIS) during 1972 included: (1) preparation of 10,196 TSP requests for TRIS application analysis; (2) interviews with over 500 individuals concerning the technical, economic, and social impacts of NASA-generated technology; (3) preparation of 38 new technology transfer example files and 101 new transfer cases; and (4) maintenance of a technology transfer library containing more than 2,900 titles. Six different modes of technology utilization are used to illustrate the pervasiveness of the transfer and diffusion of aerospace innovations. These modes also provide a basis for distinguishing the unique characteristics of the NASA Technology Utilization Program. An examination is reported of the ways in which NASA-generated technology is contributing to beneficial social change in five major areas of human concern: health, environment, safety, transportation, and communication

    Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability

    Get PDF
    Previous studies have demonstrated both beneficial and detrimental effects on soil properties from biochar incorporation. Several biochars, with different feedstock origins, were evaluated for their effectiveness at improving soil quality of a sandy agricultural soil. A pot trial was used to investigate aggregate stability and microbial activity, pore water trace element mobility and micronutrient concentrations in grain of spring wheat after incorporation of three biochars. The feedstocks for biochar production were selected because they were established UK waste products, namely oversize woody material from green waste composting facilities, and rhododendron and soft wood material from forest clearance operations. Biochars were incorporated into the soil at a rate of 5% v/v. Aggregate stability was improved following addition of oversize biochar whilst microbial activity increased in all treatments. Dissolved organic carbon (DOC) concentrations in soil pore water from biochar-treated soils were raised, whilst micronutrient concentrations in wheat grain grown in the treated soils were significantly reduced. It was concluded that incorporation of biochar to temperate agricultural soils requires caution as it may result in reductions of essential grain micronutrients required for human health, whilst the effect on aggregate stability may be linked to organic carbon functional groups on biochar surfaces and labile carbon released from the char into the soil system

    Friction Stir Weld Tooling Development for Application on the 2195 Al-Cu-Li Space Transportation System External Tank

    Get PDF
    Friction Stir Welding (FSW) is a new and innovative solid-state joining process which can be applied to difficult-to- weld aluminum alloys. However, the large forces involved with the process have posed a production tooling challenge. Lockheed Martin Michoud Space Systems has overcome many of these challenges on the Super Lightweight External Tank (ET) program. Utilizing Aluminum-Copper-Lithium alloy 2195 in the form of plate and extrusions, investigations of FSW process parameters have been completed. Major loading mechanisms are discussed in conjunction with deflection measurements. Since the ET program is a cryogenic application, a brief comparison of cryogenic material properties with room temperature material properties is offered for both FSW and fusion welds. Finally, a new approach to controlling the FSW process from a load perspective is introduced. Emphasis will be put on tooling development, as well as the impact of tooling design and philosophy on Friction Stir Weld success probability

    Indoor Exploration Using a μUAV and a Spherical Geometry Based Visual System

    Full text link

    Model predictive control system design and implementation for spacecraft rendezvous

    Get PDF
    This paper presents the design and implementation of a model predictive control (MPC) system to guide and control a chasing spacecraft during rendezvous with a passive target spacecraft in an elliptical or circular orbit, from the point of target detection all the way to capture. To achieve an efficient system design, the rendezvous manoeuvre has been partitioned into three main phases based on the range of operation, plus a collision-avoidance manoeuvre to be used in event of a fault. Each has its own associated MPC controller. Linear time-varying models are used to enable trajectory predictions in elliptical orbits, whilst a variable prediction horizon is used to achieve finite-time completion of manoeuvres, and a 1-norm cost on velocity change minimises propellant consumption. Constraints are imposed to ensure that trajectories do not collide with the target. A key feature of the design is the implementation of non-convex constraints as switched convex constraints, enabling the use of convex linear and quadratic programming. The system is implemented using commercial-off-the-shelf tools with deployment using automatic code generation in mind, and validated by closed-loop simulation. A significant reduction in total propellant consumption in comparison with a baseline benchmark solution is observed
    • …
    corecore